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ABSTRACT

Multivariate optical computing (MOC) is an all-optical approach of predictive spec-
troscopy that utilizes multivariate calibration and spectral pattern recognition tech-
niques while operating in a simple filter photometer instrument, removing the need
for expensive instrumentation and post-processing of spectral data. This is accom-
plished with specially designed interference filters called multivariate optical elements
(MOES).

MOC can provide analytical solutions for applications requiring low cost, rugged,
and simple to operate instrumentation for use in remote and hazardous environments
such as open ocean waters. These instrument specifications are central for developing
a method for classifying phytoplankton in their natural environment. Phytoplankton
are photosynthetic single cell algae and cyanobacteria that inhabit nearly all natural
bodies of water The size and taxonomic composition of the phytoplankton commu-
nity structure has global implications on carbon transport.

This dissertation describes the development of a single streak imaging multivari-
ate optical computing (SSIMOC) method for single-cell classification of phytoplank-
ton. The discussion of the SSIMOC method is broken into four main categories:
MOE design and fabrication, design and protocol of filter photometer instrumenta-
tion, analysis of SSIMOC data images of known cultured phytoplankton, and testing
in coastal ocean water at Martha’s Vineyard Coastal Observatory. The designing
and fabrication of MOEs for traditional predictive spectroscopy is reviewed as well a
discussion on modifying these models for applying predictive spectroscopy to classifi-

cation of phytoplankton. A theoretical model is presented for classifying three species

iv
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of phytoplankton and the requirements of a filter photometer needed for making MOC
measurements is discussed. The design and experimental protocol of the SSIMOC fil-
ter photometer details the components and design of the filter photometer constructed
for phytoplankton MOC measurements. The discussion will analyze the sources of
variance in the filter photometers measurements of the coccolithophore Emiliania
huzleyi. Streak deblurring and second generation streak integration algorithms for
analyzing the images collected by the SSIMOC filter photometer are discussed. These
algorithms are then applied on cultured Emiliania huxleyi and Thalassiosira pseudo-
nana data to validate the theoretical models the MOEs were designed from. Finally,
the application of the SSIMOC method tested on "real world" coastal ocean waters at
MVCO will be presented. A comparison of data collected from a cytometer deployed
at MVCO, called the FlowCytobot, will be used to determine the size range and

phytoplankton detection efficiency of the SSIMOC.
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Table 2.2 (a) Layer thicknesses for Design 212. This shows the designed
thicknesses of the first 5 layers that composed Design 212 after
design (initial) and after fabrication was completed (final). (b)
Layer thicknesses for Design 23551. This shows the designed
thicknesses of 5 layers that compose design 23551 after the design

stage (initial) and after fabrication was completed (final). . . . . . 39
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Table 3.1 Streak statistics. For each filter wheel rotation frequency, the
average integrated area of 90 streaks (9 streaks each for 10 FE.
huxleyi tracks) is given. s.d. (inter) is the standard deviation of
the average streak intensities for 10 phytoplankton tracks. s.d.
(intra) is the average of the standard deviations of 9 streaks in
each track. SNR (intra) is the average signal to noise ratio. More
details are found in the text. . . . .. . .. ... ... ... ... 68

Table 3.2 Background statistics. For each filter wheel frequency, the av-
erage integrated area of 90 regions of equivalent size to those
in Table I, but chosen from a nearby region of background near
each phytoplankton track, is provided in column 2. Column 3
gives the standard deviation of the average streak-area intensi-
ties for ten background "tracks"'. Column 4 gives the average of

the standard deviations of 9 streak areas in 10 background "tracks". 68

Table 4.1 Mean (Z), standard deviation of the mean (o), standard devi-
ation (o) and the number of samples (N) for E. huxleyi and T.
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Table 6.1 The rows in column 1 are the month and years of the cruises
that the SSIMOC participated in to MVCO. Column 2 is the
MOE filter sets that were used on each cruise described in the
text. D is a 0.3 optical density filters used a reference and the
subscripts refers to the Linear Discriminant vector each MOE is
designed to mimic as described in chapter 2. Column 3 is the
total number of data images collected on each cruise. Column 4
is the number of fluorescent particles detected by the SSIMOC.
Column 5 is the number of tracks detected that have a high
enough SNR for MOC calculations. Column 6 is the calculated
cell density based on the total number of fluorescent particles

detected and the total number of mL analyzed. . . . . . . . .. .. 121
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Figure 3.1 The rays travel from left (component 1) to right (component
7), originating at the source and pass through the optical com-
ponents to a Nikon 60x objective. Component 1 is a 75 W
Xe lamp (Sci 200, Sciencetech, Ontario, Canada); component 2
is al-inch f/1 biconvex lens (KBX046, Newport, Irvine, CA) ;
component 3 is a 1-inch f/6 planoconvex lens (KPX100, New-
port, Irvine, CA) ; component 4 is a 2-inch f/3 planoconvex field
lens (KPX199, Newport, Irvine, CA) ; component 5 is another
f/3 planoconvex lens (KPX199, Newport, Irvine, CA); compo-
nent 6 is a 2-inch diameter beam splitter (p0643drlp, Omega
Optical, Brattleboro, VT) positioned at a 45AF angle to the in-
cident light to reflect it onto component 7 which is a 60X 0.70

NA Nikon infinity-corrected objective. . . . . . . ... ... ... 56
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Figure 3.2 Schematic of fluorescence imaging photometer. Ex, the exci-
tation source is a Sciencetech 500-200 75W Xe Arc lamp and
K is a ~2.5mm aperture. The lenses, in order of excitation
to emission, are as follows: L1 is a 1 in. diameter biconvex
lens with a focal length of 1 in., L2 and L3 are 2 in. diameter
planoconvex lenses with 6 in. focal lengths, and L4 is a 2 in.
diameter biconvex lens with a 4 in. focal length. The filters are
as follows: F1 is a 550-610nm Chroma bandpass (HQ580/60),
F2 is a 68145 nm Omega Optical (HBP10) bandpass, F3 is an
OG 530 Schott long pass, and F4 is an OG 590 Schott long
pass. BS is an Omega Optical 2 in. diameter dichroic beam-
splitter (640drlp). The filter wheel, W, is a Thorlabs FW103,
powered by a Faulhaber 2057B brushless motor. The objec-
tive, M, is a Nikon, Plan Fluor, 60x magnification, 0.70 NA
objective. The sample is contained in a beaker, S, and is pulled
the flow cell, C, by a Cole-Parmer 75211-10 gear pump, G, to
a waste beaker, R. The fluorescence emitted by the sample is
passed back through the objective, M, and beamsplitter, BS,
and imaged onto a back-illuminated Princeton PIXIS 1024B CCD. 57
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Figure 3.3 Measurement scheme for collecting data using fluorescence imag-
ing photometer. (A) The x-axis represents the exposure time of
the camera in seconds, where at x=0 the shutter opens and x=1
the shutter closes. The top graphic (AALJCCD IntegrationaAl)
illustrates the CCD integration time extends well before and
after the timeline shown. The center graphic ("Transit time")
illustrates the time a phytoplankter takes to pass through the
region being imaged by the CCD. The lower graphic ("FW")
illustrates the position of the filter wheel in respect to the exci-
tation beam as a function of time, with each filter opening being
shown for filters 1-5 and a blocked opening marked "B". This
timing diagram is for a phytoplankter that enters the image vol-
ume 186 milliseconds after the camera shutter opens, at a mo-
ment when filter 3 of the filter wheel is starting to line up with
the excitation beam. During the approximately 75 milliseconds
required for the phytoplankton to traverse the image volume,
the filter wheel completes a little over 1.5 rotations. (B) An
example of the tracks that two individual phytoplankton cells
would produce in the CCD image. The track surrounded by
a dashed box is aligned and scaled relative to the graphics in
part A to emphasize the relation between the observed track
and the timing diagram. The track below the dashed box is an
example of a phytoplankter that has entered the image area at

a different time and is unrelated to the track in the dashed box. . 62
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Figure 3.4 Example image from the fluorescence imaging photometer. (A)
The image contains a track of E. huxleyi’s streaks where there
are no filters placed in the filter wheel. Regions of interest for
each streak in the track are illustrated (black outline), along
with corresponding regions of the same size just below the phy-
toplankton track (gray outline) that were used for image back-
ground measurements. A second E. huxleyi track appears in the
middle of the image but is unrelated to the E. huzleyi track of
interest. (B) Plot of summed rows from example phytoplankton
track and reference track areas shown in A. This plot shows the
summed fluorescence intensity of the rows between the upper
and lower row boundaries of the given track. . . . . . . . .. ... 66

Figure 3.5 Average streak integrated fluorescence intensity as function of
inverse filter wheel frequency. At each frequency, 90 fluores-
cence streaks were averaged (9 each for 10 phytoplankter tracks).
Error bars are 95% confidence intervals of the mean. The fitted
line has a slope of (1.91 £ 0.21) X 10° counts/sec and an inter-
cept of (2.6 + 1.0) X 10 counts. When forced through zero, the
slope of the best fit line is (2.09 & 0.03) X 10° counts/sec, where
all error limits are estimated standard errors. The normalized

value of x? for the plot shown is approximately 0.1. . . . . . . .. 70
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Figure 3.6 (A) Single-streak measurement variability averaged for 10 E.
huxleyi and 10 equivalent background regions. Open circles rep-
resent E. huxleyi streaks and solid circles are equivalent back-
ground streaks. Error bars are 95% confidence intervals for
the single-streak standard deviations. (B) Variance of single-E.
huxleyi fluorescence signals, correcting for background variance,
based on top figure. The fit is of the form y=ax, where a = 45.2

Counts. . . . . oL s 73

Figure 4.1 A) Preprocessed data image. There are 3 tracks of the coc-
colithophore Emiliania huxleyi visible in this image. The solid
black rectangle indicates the region of the image defined by the
algorithm as a track and is used as an example in the data
analysis below. B) A plot of the corrected standard deviation
along the rows for each column of the image in Fig. 1A. The
solid black line corresponds to the baseline corrected column
standard deviation and the dotted line is the calculated threshold. 90

Figure 4.2 The image area of a track presented in Fig 1A. 256 rows by 11
columns. A) Red-Green-Blue (RGB) image of the track area.
B) Gray scale image. C) Enhanced gray scale image D) Binary
image of all the objects found in the image E) Binary image
with the perimeter of each object filled out F) Binary image
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CHAPTER 1

INTRODUCTION

The development of new technologies and methodologies is a difficult and risky en-
deavor. Many environmental and ecological projects are essential for understanding
and planning future and remediation of impacts of anthropologic pollution. With
no immediate financial gains needed for industrial investment, the support for these
projects often come from private foundations and federal and state agencies. The
scale and magnitude of the work presented in this dissertation details the advance-
ments made in the area of optical computing for classification and is part of a larger
project aimed toward creating a method for long term characterizing the phytplank-
ton community in open ocean waters.

The first chapter reviews the important role phytoplankton play in the global
carbon cycle and the impact of mapping the size and taxonomic composition of the
phytoplankton community structure has on future of the environment. Here we will
examine current techniques for phytoplankton classification and highlight the difficul-
ties associated with such a complicated task. This first chapter also attempts to give
a brief overview of predictive spectroscopy and how multivariate optical computing is
utilized as an all optical method for applying predictive spectroscopy both in situ and
real time by use of specially designed interference filters called multivariate optical
elements (MOEs).

Chapter two will show that the full spectrum information of single phytoplank-
ton cells can be used to develop special optical elements, enabling rapid measure-

ments based on fluorescence excitation spectroscopy. The results show the theoretical
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classification power of the MOEs as well as setting the Signal-to-Noise ratio (SNR)
specification requirements of an imaging photometer needed in order to realize their
application on real phytoplankton samples.

Chapter three characterizes the performance of a fluorescence imaging photometer
designed and constructed to use the MOEs from chapter two for making classifica-
tion measurements of real phytoplankton. The SNR of the photometer meets the
specifications described in chapter two but is much lower than expected if limited by
photon counting noise. A thorough evaluation of possible sources from mechanical
and electrical instrumental sources is described and the hypothesis that the sources
of noise lies with the inherent variability of the test species E. huxleyi is presented.

Chapter four evaluates an algorithm developed in the MATLAB coding envi-
ronment for analyzing the fluorescent images produced by the imaging photometer
described in chapter three and validates the theoretical model in chapter two. The
results show that the shipboard streak imaging multivariate optical computing (SSI-
MOC) method can successfully classify two species of similarly pigmented phyto-
plankton.

Chapter five evaluates the SSIMOC efficiency at identifying Chlorophyll a contain-
ing fluorescence particles in coastal ocean waters at the Martha’s Vineyard Coastal
Observatory (MVCO). A standardized flow cytometry, the FlowCytobot, is used a
validation method for comparison and correction.

Chapter six evaluates the operation and results of the SSIMOC instrument and
method on board the RV Tioga on five separate research cruises at the Martha’s Vine-
yard Coastal Observatory (MVCO) from March, 2011 to July, 2012. A description
of the operation and results show that the SSIMOC is able to operate on a research

vessel and collect and analyze real ocean samples containing natural phytoplankton.
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1.1 GLOBAL IMPACT OF PHYTOPLANKTON

Phytoplankton are single cell autotrophs that inhabit virtually all natural water bod-
ies on earth.[35, 20] These microscopic single cell organisms have an enormous impact
on the global carbon cycle and oxygen production through their ability to fix atmo-
spheric CO, through photosynthesis.[31, 35, 20, 5, 42| The extent of the fixed carbon
that is effectively removed from the carbon cycle by sinking to the ocean bottom is
tied to species that make up the community structure.[22, 9, 5]

Marine biologists are inherently interested in the dynamics of the phytoplankton
community structure, but due to the increasing levels of atmospheric carbon dioxide
from anthropologic sources and its effects of global warming, the greater scientific
community is growing more interested as well.[18, 33, 50, 48] Characterizing the
phytoplankton community structure is important to obtain a better understanding
of how the oceanic ecosystem is responding to global climate changes.[5, 18, 33, 50,
55, 12]

Phytoplankton, being the oceans net primary producers, impact more than the
carbon cycle. They become problematic when their ability to grow rapidly causes
harmful blooms that are sometimes toxic or cause oxygen depletion.[1, 39] This is
a major concern along coastal regions where river run off can bring an influx of
nutrients that spark these blooms.[43, 39] The blooms have the potential to cause kill
zones over large regions, wrecking havoc on regional economies.[32] In addition to kill
zones, a more sinister problem occurs when certain blooms do not kill shell fish but
rather cause increase levels of toxins to build in the shell fish and harm humans, i.e.
diarrhetic shellfish poisoning (DSP) caused by blooms of Prorocentrum lima.|2]

To monitor and better understand the phytoplankton community structure, it
is advantageous to have a deployable, continuous and rugged method capable of

discriminating species or classes of species in open and costal waters.[3, 8, 56].
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1.2 PHOTOSYNTHESIS AND PIGMENTS

Photosynthesis is the process by which autotrophic organisms, primarily plants,
use solar radiation, carbon dioxide and water to synthesize organic carbon and
oxygen.[48, 42] The most important molecule in this photosynthetic process is Chloro-
phyll a, a pigment at the center of the photosynthetic reaction center with a fluo-
rescence emission maxima at 680 nm.[60, 63] Chlorophyll a is not only critical to
photosynthesis in the reaction center, but also has a main absorption peak at 425 nm
for light harvesting applications as part of the antenna pigment system.[46] While
chlorophyll a is the most important pigment for photosynthesis, phytoplankton also
have accessory pigments with absorption maxima in different regions to maximize the
solar spectrum. These include chlorophyll b, ¢, d, carotenes and phycobilins. [46] Al-
most every species of phytoplankton contains chlorophyll a, but the compositions of
the accessory antenna pigments vary between species. The varying concentrations of
pigments is an ideal discriminating characteristic that can be probed using excitation

fluorescence spectroscopy.[64, 63, 11]

1.3 METHOD FOR PHYTOPLANKTON CLASSIFICATION

Historically, it has been challenging to understand the temporal and spatial variations
of oceanic phytoplankton community structure because the available techniques for
phytoplankton counting and classification have not been suited to high frequency
open ocean measurements.

The gold standard for community structure measurement is traditional microscopy
of fixed and stained samples by a skilled phytoplankton taxonomist who manually
counts and classifies the phytoplankton. This task is both difficult and time con-
suming, as the morphological differences between some taxonomic classes are minute.

Culverhouse et al. show that experts, who are routinely involved in classification,
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have accuracies in the range 84-95%.[14] Unfortunately this method lacks the high
frequency sampling capacity needed for community structure monitoring.[59, 6]

Flow cytometry alone, while suited to high frequency measurement, has not been
reported as an acceptable method for phytoplankton community structure. Likewise,
classification methods using solely morphological information are often confounded by
similarities in morphology between phytoplankton species. Uhlmann et al. were the
first to report automated classification of phytoplankton cells from video images, but
no statistical summary was provided.[57] Since then, advancements in morphological
classification methods have combined microscopy with flow cytometry and resulted
in great progress.[14, 53, 19, 45, 47] Using the Video Plankton Recorder (VPR) Davis
et al. achieved accuracies between 45 and 91% in identifying individual taxa.[16]
Culverhouse et al. developed the Harmful Algal Bloom (HAB) Buoy for both zoo-
plankton and phytoplankton identification and report identification rates of 80% for
phytoplankton species.[15] Sosik et al. have developed perhaps the most innova-
tive method using cytometry, fluorescence and image analysis with the FlowCytobot,
where 88% accuracy between 22 categories is reported.[53]

CHEMTAX, a high performance liquid chromatography method, has been used
to identify the relative concentrations of taxonomic species in bulk monocultures and
mixed cultures.[36] CHEMTAX is useful in determining pigment concentration in bulk
samples for calibration or validation, but is not suited to in-situ measurements.[44]

Remote sensing methods such as satellite imagery of chlorophyll a and phycoery-
thrin have also been used for monitoring phytoplankton.[35, 29] Clarke et al. first
demonstrated that backscattered light measurements from aircraft could be used to
estimate total chlorophyll concentrations in the water.[13] Satellite images that isolate
chlorophyll a fluorescence at a band around 680 nm are useful in selectively targeting
photosynthetic organisms and estimating bulk chlorophyll a concentrations over large

areas, but are limited or unable to discriminate the speciation of the source of the
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fluorescence emission.[49, 58]

Despite the advancements described above, a rugged and deployable method suit-
able for open ocean monitoring is still desired.[17, 24, 26, 40, 27] In-situ fluorescence
excitation spectroscopy provides an alternative approach. Fluorescence excitation
spectroscopy uses spectral characteristics of a phytoplankton cell that is independent
of morphology.[63] Beutler et al. developed an in situ method using light emitting
diodes (LEDs) to selectively excite a bulk sample at 5 wavelength bands and recorded
the chlorophyll a emission for each, but provided no statistical analysis.[7] The po-
tential of this instrument for bulk in situ fluorometric measurement of phytoplankton
community structure has recently been described.[44]

The Myrick group is exploring an approach to phytoplankton classification that
combines some of the power of imaging with fluorescence excitation spectroscopy to
classify phytoplankton. This thesis will focus on the automatic analysis of spectro-
scopic content in images from a fluorescence imaging photometer and show that full-
spectrum fluorescence excitation spectroscopy can be used as a basis for distinguishing
at least limited classes of phytoplankton in cultures. The Myrick group has, through
publications and content in this thesis, shown that optical computing combined with
a fluorescence imaging is able to differentiate phytoplankton by measuring experimen-
tal fluorescence ratios and comparing them to those calculated from an optical model
from chapter 2 as well as the classification accuracy and ratio variability for each class
using two similarly pigmented phytoplankton species: the coccolithophore Emiliania
huzleyi (E. huzleyi) and the diatom Thalassiosira pseudonana (T. pseudonana).[41]
We found that the measured MOE ratio for F. huxleyi differed from the theoretical
MOE ratio (chapter 1) by -3%, and that of T. pseudonana differed by +0.1%, with
a measured ratio difference of 0.281 versus a theoretical ratio difference of 0.251.[41]
The distribution of individual cell ratios was well explained by the signal to noise

ratio (SNR) of the instrument reported in chapter 3 and no misclassifications were
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seen for 853 cells of two species analyzed.

1.4 MULTIVARIATE ANALYSIS AND OPTICAL COMPUTING

Multivariate Calibration and Discriminant Analysis
Principal Component Analysis

The measured spectral variables of a complex data set can be transformed using linear
multivariate models such as principal component analysis (PCA) into orthogonal ba-
sis vectors called principle components (PCs).[23, 34] These PCs model the statistical
significant variations in the data along with noise, the first PC describes the most
significance variations in the data with each successive PC containing less until even-
tually describing only noise. The PCs containing the significant variations can then
be used for data analysis while the PCs containing mostly noise are not, attempting
to remove the noise in further analysis of the data. Or, reduce the dimensionality of
the data set while retaining the significant variations within the data set.[11]

A common and popular method for calculating PCs of a spectral data set is with
singular value decomposition (SVD), a predefined algorithm in the Matlab program-
ing environment. The fluorescence excitation spectra described in the next two chap-
ters, and in a recent Myrick group publication[11], were decomposed using equation

1.1:

A=USVT (1.1)

where the columns of U contain the columns PC scores of A, S contains the
square root of the PCs of AT A and V7 contains the row PC loadings of A.[10, 4] The
greatest variation of the data set A is described by the first row vector in V7, with
each following row describing less. The PC scores are computed by multiplying the

U matrix by the S matrix.
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Linear Discriminant Analysis

Linear discriminant analysis (LDA) was first developed by Ronald Fisher in 1936
in his work with taxonomic classification in genetic research.[21] LDA is a form of
supervised classification, meaning that a known set of known parameters are used
in the model, where as unsupervised methods do not and are useful in discovering
patterns in data sets.[23] LDA is used to classify samples into separate classes based on
known variables of each sample, such as their fluorescence excitation spectrum. LDA
is a common technique for classification that has been used in image pattern methods
for facial recognition, microarray gene expression, and pattern recognition.[37, 61, 30,
28, 51, 65, 52

Unlike PCA, where calculated vectors describe the data, LDA calculates vectors
that describe the features in the data matrix that show the greatest difference be-
tween classes. The independent features of the data set are used to calculate linear
combinations of these features that maximize the variance between classes while min-
imizing the variance within each classes.[62, 23] A requirement of LDA is that the
number of samples must be larger than the the number of variables. When a data set
has a large number of independent variables, such as a fluorescence excitation spec-
trum, PCA can be used to reduce the number of variable to the number of significant
PCs in the data set. [10, 62]

The Fisher ratio maximized in LDA is given by 1.2:

2

F = Ub;tween (12)
O within
where o2 is the variance, shows Fisher Ratio that LDA algorithms maximize. The

greater this ratio, the more significant the discrimination function. [21]
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Optical Computing

Traditional multivariate calibration techniques such as principle component regression
(PCR), partial least squares (PLS) and linear discriminant regression(LDR) extract
spectral patterns from a digitized spectrum obtained using a wavelength selection
spectrometer or other method to predict a pure component spectral variations that
are correlated to a digitized spectral vector. A regression vector is then calculated
from a data set of known chemical or physical properties (i.e. concentration, particle
size, ect.) and correlated with the magnitude of the dot product between the calcu-
lated vector and the spectrum of the known sample. Using the regression vector, a
predictive model is generated for determining the properties of interest of unknown
samples.

Multivariate optical computing (MOC) is a predictive spectroscopic technique
that combines the data collection and processing steps of a traditional multivariate
analysis into a single and instantaneous step.[54] It achieves this by applying an all
optical technique to masking or filtering part of the optical path with a specially de-
signed interference filter called a multivariate optical element (MOE). This approach
drastically lessons the complexity of the instrumentation required for making the
measurements from a powerful desecrate wavelength spectrometer to a simple filter

photometer instrument with little to no moving components.

Multivariate Optical Elements

MOE:s are specially designed and fabricated interference filters that perform the equiv-
alent dot product operation, as described in PCA and LDA above, by filtering the
optical train of a measurement with an optical filter with a specific transmission
function.[38] Each MOE filter design is analyze specific and intended to replace the
need for a conventional spectroscopic instrumentation and computer processing used

for multivariate calibration and prediction. It allows for an optical prediction of a
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chemical or physical prediction of an unknown sample to be made without the col-
lection of a spectrum, but rather a single optical response.

The spectral function of an MOE is generated by randomly seeding(i.e., initial
guesses at the structure of a MOE) the thickness of thin film stacks that are then
refined.[25] In operation, the random seed points for the optimization are constrained
in several ways. The materials from which the layers will be designed are predefined
as a binary pair of high and low-index materials (e.g. NbyOs and SiOs). From this
point, the algorithm seeks to optimize the thicknesses of the layers in the film stack
of the interference filter so as to minimize the standard error of calibration (SEC)
for prediction The design process is repeated many times to form a population of

optimized MOE designs with different characteristics.

10
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CHAPTER 2
DESIGN AND THEORETICAL PERFORMANCE OF
MULTIVARIATE OPTICAL ELEMENTS FOR TAXONOMIC

CLASSIFICATION OF PHYTOPLANKTON

2.1 INTRODUCTION

Phytoplankton are single-celled, photosynthetic algae and cyanobacteria found in all
aquatic environments. Phytoplankton photosynthesis accounts for at least 90% of
global ocean primary productivity and is the nutritional foundation for virtually all
life in the sea.[3] The size and taxonomic composition of phytoplankton communities
determine how carbon is transferred through ocean food webs, and the extent to which
it is recycled vs. transported to the deep ocean.[16] Characterization of phytoplankton
communities over a wide range of temporal and spatial scales is critical to developing
models of carbon cycling, and to predicting the ocean response to global climate
change.

The potential use of spectral fluorescence for characterizing phytoplankton com-
munities was first recognized by Yentsch and Phinney.[22] The general approach is
based on selective excitation of differing antenna and accessory pigments between
taxonomic groups of algae, with quantification of the resulting red fluorescence of
chlorophyll a.[7] A number of similar approaches have recently been developed that
rely on the use of fluorescence excitation spectra, emission spectra, or both, for phy-

toplankton quantification and/or characterization.[21, 1, 15]
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Our work uses multivariate optical computing (MOC) to emulate linear discrim-
inant (LD) vectors of phytoplankton fluorescence excitation spectra using a simple
filter-photometer arrangement. Our previous studies have shown that optical mea-
surements based on spectral pattern analysis can be performed using MOC.[18, 14]
At the center of MOC is the design of interference filters that we call multivariate op-
tical elements (MOESs). These interference filters have complex spectral transmission
functions that make possible a variety of multivariate measurements. In the past, the
main application of MOC was the measurement of chemical concentrations in com-
plex samples based on near-infrared, UV-Visible, and Raman spectroscopies of the
samples as an optical, in situ alternative to the post-sampling, multivariate techniques
of partial least squares and principal components regression analysis.[10, 9, 19]

In the present work we present a new application of MOC to the classification of
phytoplankton based on linear discriminants analysis (LDA) of fluorescence excitation
spectroscopy. We first use LDA to confirm that three differently pigmented species
of phytoplankton are differentiable from one another using single-cell fluorescence
excitation spectroscopy. Thousands of possible MOEs were then designed to make
the same measurement in a more robust filter-photometer system. Finally, we show
how the theoretical characteristics of the designs were used in determining which
optical elements were selected for fabrication. Two subsequent manuscripts in this
series describe how the MOE designs were then used to construct and evaluate an

instrument for the in situ classification of phytoplankton.

2.2 EXPERIMENTAL

Calibration Spectra

Single cell fluorescence excitation spectra were collected with a custom-built single

cell fluorometer described by Hill et al.[6] Fluorescence was excited between 350 nm
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and 650 nm at 2 nm increments using a spectral bandwidth of approximately 10 nm
over the excitation wavelength region. Fluorescence emission was detected at 680 +
5 nm defined with a bandpass filter.

Unialgal cultures of three phytoplankton species were obtained from the Center
for the Culture of Marine Phytoplankton (CCMP strain; recently re-named the Na-
tional Center for Marine Algae and Microbiota) at the Bigelow Laboratory for Ocean
Sciences, East Boothbay Harbor, Maine. These cultures were: FEmiliania huxleyi
(CCMP strain 375, E. huxleyi), Thalassiosira pseudonana (CCMP strain 1335, T.
pseudonana) and Synechococcus sp. (CCMP 833, Synechococcus). Cells were grown
in batch culture at 23A¥C and 80 ?mol photons m-2 s-1 with illumination from the
top and the sides on a 12:12 light:dark cycle in filter-sterilized f/2 culture medium.[4]
Spectra were collected from nutrient-replete cells in exponential growth phase. A
total of 200 single cell fluorescence excitation spectra were used as a calibration set:
77 for E. huxleyi spectra, 46 for T. pseudonana and 76 for Synechococcus. The 200
spectra used for calibration were those that did not exhibit any of the errors de-
scribed in reference [Hill et al.], which include high apparent noise due to cell motion,
collisions with other phytoplankton, and escape of the phytoplankter from the trap
during study.

The critical measurement for using MOC for classification is the ratio of the
recorded fluorescence from a single phytoplankter cell when excitation first passes
through a MOE to that recorded when excitation passes through another filter, either
a neutral density filter or another MOE. Acquiring the MOE measurement referenced
to a neutral density filter is optically equivalent to normalizing the MOE measure-
ment to the total integrated intensity in a fluorescence excitation spectrum over the
excitation band.[17] For the purposes of LDA, the equivalent procedure is normaliza-
tion of the calibration spectra to unit area. Thus, the fluorescence excitation spectra

in this study were normalized to unit integrated area to correct for variations in total

22

www.manaraa.com



emission prior to analysis by LDA to verify if classification was practical under this
normalization condition. Figure 2.1 shows the full spectral data set normalized to

unit area.[6]
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Figure 2.1 Fluorescence excitation spectra of individual cells of three species. The
area-normalized fluorescence excitation spectra of 77 E. huzleyi (black), 46 T.
pseudonana (yellow) and 76 Synechococcus sp. (pink) cells excited in 2 nm
increments over the range of 350 to 650 nm with a spectral resolution of ~10 nm.
The inset shows the same spectra renormalized in the wavelength range for best
classification, 550 to 610 nm.

LDA was conducted using the approach described by Bruckman et al., which uses
LDA to compare different continuous wavelength regions for their performance.[2]
The result of this LDA-based analysis is an estimate of the best achievable discrim-
ination among species based on the available calibration spectra as well as the best
continuous wavelength region for performing that discrimination for the three classes
of phytoplankton tested. As a result of this brute-force automated approach to LDA,
the 550-610 nm wavelength region was found to have the most favorable characteris-

ticsfor.distinguishing the three phytoplankton species.
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Multivariate Optical Element Design

In the absence of a native MOC algorithm for approximating LDA, MOEs were
designed using the existing calibration code. This was accomplished by treating the
scores of each calibration spectrum on the linear discriminant vector from LDA as
if they were quantities we would like the MOEs to predict. The existing calibration
code is based on a nonlinear optimization algorithm described previously by Soyemi
et al.[19] that has been modified to run on a computer cluster.[13] This algorithm is
coded in MATLAB; the cluster itself and the software that implements the algorithm
are referred to below as the design suite because it is capable of MOE design using a
variety of different criteria and for a variety of different optical computing styles.[13]
The computer cluster that runs the design suite software consists of three Dell PCs
with a total of 12 processors running in parallel.

The design suite algorithm operates by generating random seed points (i.e., initial
guesses at the structure of a MOE) that are then refined. In operation, the random
seed points for the design suite optimization are constrained in several ways. First,
the materials from which the layers will be designed are predefined as a binary pair
of high and low-index materials. For the work here, this pair was NbyO5/Si0O;5. The
second constraint is the total thickness of all seed points, expressed as an approximate
spectral resolution in wavenumbers. In this study, we constrained the stack to start
at 256 cm 1, which for a quarter-wave stack of Nby,Os5 and SiOs is equivalent to a
physical thickness of 7.28 micrometers.[13] The third constraint is in the number of
layers that form the seed stack. In this study, seed stacks contained 11 layers, 6 of
which were high index, and 5 of which were low index.

From this point, the algorithm seeks to optimize the thicknesses of the layers in the
film stack of the interference filter so as to minimize the standard error of calibration
(SEC) for prediction of the phytoplankton’s score on a linear discriminant vector.

Optimization continues until no changes in the film stack yield an improved SEC.
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The design process is repeated many times to form a population of optimized MOE
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