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Abstract

Multivariate optical computing (MOC) is an all-optical approach of predictive spec-

troscopy that utilizes multivariate calibration and spectral pattern recognition tech-

niques while operating in a simple filter photometer instrument, removing the need

for expensive instrumentation and post-processing of spectral data. This is accom-

plished with specially designed interference filters called multivariate optical elements

(MOEs).

MOC can provide analytical solutions for applications requiring low cost, rugged,

and simple to operate instrumentation for use in remote and hazardous environments

such as open ocean waters. These instrument specifications are central for developing

a method for classifying phytoplankton in their natural environment. Phytoplankton

are photosynthetic single cell algae and cyanobacteria that inhabit nearly all natural

bodies of water The size and taxonomic composition of the phytoplankton commu-

nity structure has global implications on carbon transport.

This dissertation describes the development of a single streak imaging multivari-

ate optical computing (SSIMOC) method for single-cell classification of phytoplank-

ton. The discussion of the SSIMOC method is broken into four main categories:

MOE design and fabrication, design and protocol of filter photometer instrumenta-

tion, analysis of SSIMOC data images of known cultured phytoplankton, and testing

in coastal ocean water at Martha’s Vineyard Coastal Observatory. The designing

and fabrication of MOEs for traditional predictive spectroscopy is reviewed as well a

discussion on modifying these models for applying predictive spectroscopy to classifi-

cation of phytoplankton. A theoretical model is presented for classifying three species
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of phytoplankton and the requirements of a filter photometer needed for making MOC

measurements is discussed. The design and experimental protocol of the SSIMOC fil-

ter photometer details the components and design of the filter photometer constructed

for phytoplankton MOC measurements. The discussion will analyze the sources of

variance in the filter photometers measurements of the coccolithophore Emiliania

huxleyi. Streak deblurring and second generation streak integration algorithms for

analyzing the images collected by the SSIMOC filter photometer are discussed. These

algorithms are then applied on cultured Emiliania huxleyi and Thalassiosira pseudo-

nana data to validate the theoretical models the MOEs were designed from. Finally,

the application of the SSIMOC method tested on "real world" coastal ocean waters at

MVCO will be presented. A comparison of data collected from a cytometer deployed

at MVCO, called the FlowCytobot, will be used to determine the size range and

phytoplankton detection efficiency of the SSIMOC.
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Figure 3.1 The rays travel from left (component 1) to right (component
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ponents to a Nikon 60x objective. Component 1 is a 75 W

Xe lamp (Sci 200, Sciencetech, Ontario, Canada); component 2

is a1-inch f/1 biconvex lens (KBX046, Newport, Irvine, CA) ;

component 3 is a 1-inch f/6 planoconvex lens (KPX100, New-

port, Irvine, CA) ; component 4 is a 2-inch f/3 planoconvex field

lens (KPX199, Newport, Irvine, CA) ; component 5 is another

f/3 planoconvex lens (KPX199, Newport, Irvine, CA); compo-

nent 6 is a 2-inch diameter beam splitter (p0643drlp, Omega

Optical, Brattleboro, VT) positioned at a 45Âř angle to the in-

cident light to reflect it onto component 7 which is a 60X 0.70

NA Nikon infinity-corrected objective. . . . . . . . . . . . . . . . 56
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Figure 3.2 Schematic of fluorescence imaging photometer. Ex, the exci-

tation source is a Sciencetech 500-200 75W Xe Arc lamp and

K is a ∼2.5mm aperture. The lenses, in order of excitation

to emission, are as follows: L1 is a 1 in. diameter biconvex

lens with a focal length of 1 in., L2 and L3 are 2 in. diameter

planoconvex lenses with 6 in. focal lengths, and L4 is a 2 in.

diameter biconvex lens with a 4 in. focal length. The filters are

as follows: F1 is a 550-610nm Chroma bandpass (HQ580/60),

F2 is a 681±5 nm Omega Optical (HBP10) bandpass, F3 is an

OG 530 Schott long pass, and F4 is an OG 590 Schott long

pass. BS is an Omega Optical 2 in. diameter dichroic beam-

splitter (640drlp). The filter wheel, W, is a Thorlabs FW103,

powered by a Faulhaber 2057B brushless motor. The objec-

tive, M, is a Nikon, Plan Fluor, 60x magnification, 0.70 NA

objective. The sample is contained in a beaker, S, and is pulled

the flow cell, C, by a Cole-Parmer 75211-10 gear pump, G, to

a waste beaker, R. The fluorescence emitted by the sample is

passed back through the objective, M, and beamsplitter, BS,

and imaged onto a back-illuminated Princeton PIXIS 1024B CCD. 57
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Figure 3.3 Measurement scheme for collecting data using fluorescence imag-

ing photometer. (A) The x-axis represents the exposure time of

the camera in seconds, where at x=0 the shutter opens and x=1

the shutter closes. The top graphic (âĂĲCCD IntegrationâĂİ)

illustrates the CCD integration time extends well before and

after the timeline shown. The center graphic ("Transit time")

illustrates the time a phytoplankter takes to pass through the

region being imaged by the CCD. The lower graphic ("FW")

illustrates the position of the filter wheel in respect to the exci-

tation beam as a function of time, with each filter opening being

shown for filters 1-5 and a blocked opening marked "B". This

timing diagram is for a phytoplankter that enters the image vol-

ume 186 milliseconds after the camera shutter opens, at a mo-

ment when filter 3 of the filter wheel is starting to line up with

the excitation beam. During the approximately 75 milliseconds

required for the phytoplankton to traverse the image volume,

the filter wheel completes a little over 1.5 rotations. (B) An

example of the tracks that two individual phytoplankton cells

would produce in the CCD image. The track surrounded by

a dashed box is aligned and scaled relative to the graphics in

part A to emphasize the relation between the observed track

and the timing diagram. The track below the dashed box is an

example of a phytoplankter that has entered the image area at

a different time and is unrelated to the track in the dashed box. . 62
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Figure 3.4 Example image from the fluorescence imaging photometer. (A)

The image contains a track of E. huxleyi’s streaks where there

are no filters placed in the filter wheel. Regions of interest for

each streak in the track are illustrated (black outline), along

with corresponding regions of the same size just below the phy-

toplankton track (gray outline) that were used for image back-

ground measurements. A second E. huxleyi track appears in the

middle of the image but is unrelated to the E. huxleyi track of

interest. (B) Plot of summed rows from example phytoplankton

track and reference track areas shown in A. This plot shows the

summed fluorescence intensity of the rows between the upper

and lower row boundaries of the given track. . . . . . . . . . . . . 66
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Figure 3.6 (A) Single-streak measurement variability averaged for 10 E.

huxleyi and 10 equivalent background regions. Open circles rep-

resent E. huxleyi streaks and solid circles are equivalent back-

ground streaks. Error bars are 95% confidence intervals for
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based on top figure. The fit is of the form y=ax, where a = 45.2
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Figure 5.2 A) The histogram plot in red of the log of the cell density (cell

counts/mL) vs log of the chlorophyll a fluorescence (volts) col-

lected during a July 2012 cruise from the FlowCytobot. The

histogram plot outlined in black is of the log of the cell density

(cell counts/mL) vs log of the chlorophyll a fluorescence (photon

counts) collected during a July 2012 cruise from the SSIMOC

filter photometer. B) Same histograms as in (A) except that

the SSIMOC plot is shifted to the left 4.95 log units and the

FlowCytobot plot is shifted up 0.1191 log units. This is done to

visually determine if the plots have overlapping features, which

are visible in (B) between -0.6 and 0.9 volt log units. . . . . . . . 108
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Figure 6.2 Classification distribution of 200 phytoplankton tracks collected

from MVCO in March of 2012. The dashed regions repre-

sent 95% confidence intervals calculated from measurements of

cultured dinoflagellate (red), diatom (green), and haptophyte

(black) when interrogated through the 3 class MOEs. The solid

circles represent the MVCO natural population recorded using

the 3 class set MOEs, the size of the circle represents it’s rela-

tive size (largest circle represents 44 microns and smallest circle

represents less than 3 microns) and color gradient represents av-

erage fluorescence intensity over all 5 streaks. Unknown samples

that fall within the 95% confidence limits would be classified as

either a dinoflagellate, diatom or haptophyte. Unknown sam-

ples that fall outside these bounds would be classified as not

belonging to any of these three class. . . . . . . . . . . . . . . . . 122
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Chapter 1

Introduction

The development of new technologies and methodologies is a difficult and risky en-

deavor. Many environmental and ecological projects are essential for understanding

and planning future and remediation of impacts of anthropologic pollution. With

no immediate financial gains needed for industrial investment, the support for these

projects often come from private foundations and federal and state agencies. The

scale and magnitude of the work presented in this dissertation details the advance-

ments made in the area of optical computing for classification and is part of a larger

project aimed toward creating a method for long term characterizing the phytplank-

ton community in open ocean waters.

The first chapter reviews the important role phytoplankton play in the global

carbon cycle and the impact of mapping the size and taxonomic composition of the

phytoplankton community structure has on future of the environment. Here we will

examine current techniques for phytoplankton classification and highlight the difficul-

ties associated with such a complicated task. This first chapter also attempts to give

a brief overview of predictive spectroscopy and how multivariate optical computing is

utilized as an all optical method for applying predictive spectroscopy both in situ and

real time by use of specially designed interference filters called multivariate optical

elements (MOEs).

Chapter two will show that the full spectrum information of single phytoplank-

ton cells can be used to develop special optical elements, enabling rapid measure-

ments based on fluorescence excitation spectroscopy. The results show the theoretical

1



www.manaraa.com

classification power of the MOEs as well as setting the Signal-to-Noise ratio (SNR)

specification requirements of an imaging photometer needed in order to realize their

application on real phytoplankton samples.

Chapter three characterizes the performance of a fluorescence imaging photometer

designed and constructed to use the MOEs from chapter two for making classifica-

tion measurements of real phytoplankton. The SNR of the photometer meets the

specifications described in chapter two but is much lower than expected if limited by

photon counting noise. A thorough evaluation of possible sources from mechanical

and electrical instrumental sources is described and the hypothesis that the sources

of noise lies with the inherent variability of the test species E. huxleyi is presented.

Chapter four evaluates an algorithm developed in the MATLAB coding envi-

ronment for analyzing the fluorescent images produced by the imaging photometer

described in chapter three and validates the theoretical model in chapter two. The

results show that the shipboard streak imaging multivariate optical computing (SSI-

MOC) method can successfully classify two species of similarly pigmented phyto-

plankton.

Chapter five evaluates the SSIMOC efficiency at identifying Chlorophyll a contain-

ing fluorescence particles in coastal ocean waters at the Martha’s Vineyard Coastal

Observatory (MVCO). A standardized flow cytometry, the FlowCytobot, is used a

validation method for comparison and correction.

Chapter six evaluates the operation and results of the SSIMOC instrument and

method on board the RV Tioga on five separate research cruises at the Martha’s Vine-

yard Coastal Observatory (MVCO) from March, 2011 to July, 2012. A description

of the operation and results show that the SSIMOC is able to operate on a research

vessel and collect and analyze real ocean samples containing natural phytoplankton.

2
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1.1 Global Impact of Phytoplankton

Phytoplankton are single cell autotrophs that inhabit virtually all natural water bod-

ies on earth.[35, 20] These microscopic single cell organisms have an enormous impact

on the global carbon cycle and oxygen production through their ability to fix atmo-

spheric CO2 through photosynthesis.[31, 35, 20, 5, 42] The extent of the fixed carbon

that is effectively removed from the carbon cycle by sinking to the ocean bottom is

tied to species that make up the community structure.[22, 9, 5]

Marine biologists are inherently interested in the dynamics of the phytoplankton

community structure, but due to the increasing levels of atmospheric carbon dioxide

from anthropologic sources and its effects of global warming, the greater scientific

community is growing more interested as well.[18, 33, 50, 48] Characterizing the

phytoplankton community structure is important to obtain a better understanding

of how the oceanic ecosystem is responding to global climate changes.[5, 18, 33, 50,

55, 12]

Phytoplankton, being the oceans net primary producers, impact more than the

carbon cycle. They become problematic when their ability to grow rapidly causes

harmful blooms that are sometimes toxic or cause oxygen depletion.[1, 39] This is

a major concern along coastal regions where river run off can bring an influx of

nutrients that spark these blooms.[43, 39] The blooms have the potential to cause kill

zones over large regions, wrecking havoc on regional economies.[32] In addition to kill

zones, a more sinister problem occurs when certain blooms do not kill shell fish but

rather cause increase levels of toxins to build in the shell fish and harm humans, i.e.

diarrhetic shellfish poisoning (DSP) caused by blooms of Prorocentrum lima.[2]

To monitor and better understand the phytoplankton community structure, it

is advantageous to have a deployable, continuous and rugged method capable of

discriminating species or classes of species in open and costal waters.[3, 8, 56].

3
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1.2 Photosynthesis and Pigments

Photosynthesis is the process by which autotrophic organisms, primarily plants,

use solar radiation, carbon dioxide and water to synthesize organic carbon and

oxygen.[48, 42] The most important molecule in this photosynthetic process is Chloro-

phyll a, a pigment at the center of the photosynthetic reaction center with a fluo-

rescence emission maxima at 680 nm.[60, 63] Chlorophyll a is not only critical to

photosynthesis in the reaction center, but also has a main absorption peak at 425 nm

for light harvesting applications as part of the antenna pigment system.[46] While

chlorophyll a is the most important pigment for photosynthesis, phytoplankton also

have accessory pigments with absorption maxima in different regions to maximize the

solar spectrum. These include chlorophyll b, c, d, carotenes and phycobilins. [46] Al-

most every species of phytoplankton contains chlorophyll a, but the compositions of

the accessory antenna pigments vary between species. The varying concentrations of

pigments is an ideal discriminating characteristic that can be probed using excitation

fluorescence spectroscopy.[64, 63, 11]

1.3 Method for Phytoplankton Classification

Historically, it has been challenging to understand the temporal and spatial variations

of oceanic phytoplankton community structure because the available techniques for

phytoplankton counting and classification have not been suited to high frequency

open ocean measurements.

The gold standard for community structure measurement is traditional microscopy

of fixed and stained samples by a skilled phytoplankton taxonomist who manually

counts and classifies the phytoplankton. This task is both difficult and time con-

suming, as the morphological differences between some taxonomic classes are minute.

Culverhouse et al. show that experts, who are routinely involved in classification,
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have accuracies in the range 84-95%.[14] Unfortunately this method lacks the high

frequency sampling capacity needed for community structure monitoring.[59, 6]

Flow cytometry alone, while suited to high frequency measurement, has not been

reported as an acceptable method for phytoplankton community structure. Likewise,

classification methods using solely morphological information are often confounded by

similarities in morphology between phytoplankton species. Uhlmann et al. were the

first to report automated classification of phytoplankton cells from video images, but

no statistical summary was provided.[57] Since then, advancements in morphological

classification methods have combined microscopy with flow cytometry and resulted

in great progress.[14, 53, 19, 45, 47] Using the Video Plankton Recorder (VPR) Davis

et al. achieved accuracies between 45 and 91% in identifying individual taxa.[16]

Culverhouse et al. developed the Harmful Algal Bloom (HAB) Buoy for both zoo-

plankton and phytoplankton identification and report identification rates of 80% for

phytoplankton species.[15] Sosik et al. have developed perhaps the most innova-

tive method using cytometry, fluorescence and image analysis with the FlowCytobot,

where 88% accuracy between 22 categories is reported.[53]

CHEMTAX, a high performance liquid chromatography method, has been used

to identify the relative concentrations of taxonomic species in bulk monocultures and

mixed cultures.[36] CHEMTAX is useful in determining pigment concentration in bulk

samples for calibration or validation, but is not suited to in-situ measurements.[44]

Remote sensing methods such as satellite imagery of chlorophyll a and phycoery-

thrin have also been used for monitoring phytoplankton.[35, 29] Clarke et al. first

demonstrated that backscattered light measurements from aircraft could be used to

estimate total chlorophyll concentrations in the water.[13] Satellite images that isolate

chlorophyll a fluorescence at a band around 680 nm are useful in selectively targeting

photosynthetic organisms and estimating bulk chlorophyll a concentrations over large

areas, but are limited or unable to discriminate the speciation of the source of the

5
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fluorescence emission.[49, 58]

Despite the advancements described above, a rugged and deployable method suit-

able for open ocean monitoring is still desired.[17, 24, 26, 40, 27] In-situ fluorescence

excitation spectroscopy provides an alternative approach. Fluorescence excitation

spectroscopy uses spectral characteristics of a phytoplankton cell that is independent

of morphology.[63] Beutler et al. developed an in situ method using light emitting

diodes (LEDs) to selectively excite a bulk sample at 5 wavelength bands and recorded

the chlorophyll a emission for each, but provided no statistical analysis.[7] The po-

tential of this instrument for bulk in situ fluorometric measurement of phytoplankton

community structure has recently been described.[44]

The Myrick group is exploring an approach to phytoplankton classification that

combines some of the power of imaging with fluorescence excitation spectroscopy to

classify phytoplankton. This thesis will focus on the automatic analysis of spectro-

scopic content in images from a fluorescence imaging photometer and show that full-

spectrum fluorescence excitation spectroscopy can be used as a basis for distinguishing

at least limited classes of phytoplankton in cultures. The Myrick group has, through

publications and content in this thesis, shown that optical computing combined with

a fluorescence imaging is able to differentiate phytoplankton by measuring experimen-

tal fluorescence ratios and comparing them to those calculated from an optical model

from chapter 2 as well as the classification accuracy and ratio variability for each class

using two similarly pigmented phytoplankton species: the coccolithophore Emiliania

huxleyi (E. huxleyi) and the diatom Thalassiosira pseudonana (T. pseudonana).[41]

We found that the measured MOE ratio for E. huxleyi differed from the theoretical

MOE ratio (chapter 1) by -3%, and that of T. pseudonana differed by +0.1%, with

a measured ratio difference of 0.281 versus a theoretical ratio difference of 0.251.[41]

The distribution of individual cell ratios was well explained by the signal to noise

ratio (SNR) of the instrument reported in chapter 3 and no misclassifications were
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seen for 853 cells of two species analyzed.

1.4 Multivariate Analysis and Optical Computing

Multivariate Calibration and Discriminant Analysis

Principal Component Analysis

The measured spectral variables of a complex data set can be transformed using linear

multivariate models such as principal component analysis (PCA) into orthogonal ba-

sis vectors called principle components (PCs).[23, 34] These PCs model the statistical

significant variations in the data along with noise, the first PC describes the most

significance variations in the data with each successive PC containing less until even-

tually describing only noise. The PCs containing the significant variations can then

be used for data analysis while the PCs containing mostly noise are not, attempting

to remove the noise in further analysis of the data. Or, reduce the dimensionality of

the data set while retaining the significant variations within the data set.[11]

A common and popular method for calculating PCs of a spectral data set is with

singular value decomposition (SVD), a predefined algorithm in the Matlab program-

ing environment. The fluorescence excitation spectra described in the next two chap-

ters, and in a recent Myrick group publication[11], were decomposed using equation

1.1:

A = USV T (1.1)

where the columns of U contain the columns PC scores of A, S contains the

square root of the PCs of ATA and V T contains the row PC loadings of A.[10, 4] The

greatest variation of the data set A is described by the first row vector in V T , with

each following row describing less. The PC scores are computed by multiplying the

U matrix by the S matrix.

7
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Linear Discriminant Analysis

Linear discriminant analysis (LDA) was first developed by Ronald Fisher in 1936

in his work with taxonomic classification in genetic research.[21] LDA is a form of

supervised classification, meaning that a known set of known parameters are used

in the model, where as unsupervised methods do not and are useful in discovering

patterns in data sets.[23] LDA is used to classify samples into separate classes based on

known variables of each sample, such as their fluorescence excitation spectrum. LDA

is a common technique for classification that has been used in image pattern methods

for facial recognition, microarray gene expression, and pattern recognition.[37, 61, 30,

28, 51, 65, 52]

Unlike PCA, where calculated vectors describe the data, LDA calculates vectors

that describe the features in the data matrix that show the greatest difference be-

tween classes. The independent features of the data set are used to calculate linear

combinations of these features that maximize the variance between classes while min-

imizing the variance within each classes.[62, 23] A requirement of LDA is that the

number of samples must be larger than the the number of variables. When a data set

has a large number of independent variables, such as a fluorescence excitation spec-

trum, PCA can be used to reduce the number of variable to the number of significant

PCs in the data set. [10, 62]

The Fisher ratio maximized in LDA is given by 1.2:

F = σ2
between

σ2
within

(1.2)

where σ2 is the variance, shows Fisher Ratio that LDA algorithms maximize. The

greater this ratio, the more significant the discrimination function. [21]

8
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Optical Computing

Traditional multivariate calibration techniques such as principle component regression

(PCR), partial least squares (PLS) and linear discriminant regression(LDR) extract

spectral patterns from a digitized spectrum obtained using a wavelength selection

spectrometer or other method to predict a pure component spectral variations that

are correlated to a digitized spectral vector. A regression vector is then calculated

from a data set of known chemical or physical properties (i.e. concentration, particle

size, ect.) and correlated with the magnitude of the dot product between the calcu-

lated vector and the spectrum of the known sample. Using the regression vector, a

predictive model is generated for determining the properties of interest of unknown

samples.

Multivariate optical computing (MOC) is a predictive spectroscopic technique

that combines the data collection and processing steps of a traditional multivariate

analysis into a single and instantaneous step.[54] It achieves this by applying an all

optical technique to masking or filtering part of the optical path with a specially de-

signed interference filter called a multivariate optical element (MOE). This approach

drastically lessons the complexity of the instrumentation required for making the

measurements from a powerful desecrate wavelength spectrometer to a simple filter

photometer instrument with little to no moving components.

Multivariate Optical Elements

MOEs are specially designed and fabricated interference filters that perform the equiv-

alent dot product operation, as described in PCA and LDA above, by filtering the

optical train of a measurement with an optical filter with a specific transmission

function.[38] Each MOE filter design is analyze specific and intended to replace the

need for a conventional spectroscopic instrumentation and computer processing used

for multivariate calibration and prediction. It allows for an optical prediction of a
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chemical or physical prediction of an unknown sample to be made without the col-

lection of a spectrum, but rather a single optical response.

The spectral function of an MOE is generated by randomly seeding(i.e., initial

guesses at the structure of a MOE) the thickness of thin film stacks that are then

refined.[25] In operation, the random seed points for the optimization are constrained

in several ways. The materials from which the layers will be designed are predefined

as a binary pair of high and low-index materials (e.g. Nb2O5 and SiO2). From this

point, the algorithm seeks to optimize the thicknesses of the layers in the film stack

of the interference filter so as to minimize the standard error of calibration (SEC)

for prediction The design process is repeated many times to form a population of

optimized MOE designs with different characteristics.
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Chapter 2

Design and Theoretical Performance of

Multivariate Optical Elements for Taxonomic

Classification of Phytoplankton

2.1 Introduction

Phytoplankton are single-celled, photosynthetic algae and cyanobacteria found in all

aquatic environments. Phytoplankton photosynthesis accounts for at least 90% of

global ocean primary productivity and is the nutritional foundation for virtually all

life in the sea.[3] The size and taxonomic composition of phytoplankton communities

determine how carbon is transferred through ocean food webs, and the extent to which

it is recycled vs. transported to the deep ocean.[16] Characterization of phytoplankton

communities over a wide range of temporal and spatial scales is critical to developing

models of carbon cycling, and to predicting the ocean response to global climate

change.

The potential use of spectral fluorescence for characterizing phytoplankton com-

munities was first recognized by Yentsch and Phinney.[22] The general approach is

based on selective excitation of differing antenna and accessory pigments between

taxonomic groups of algae, with quantification of the resulting red fluorescence of

chlorophyll a.[7] A number of similar approaches have recently been developed that

rely on the use of fluorescence excitation spectra, emission spectra, or both, for phy-

toplankton quantification and/or characterization.[21, 1, 15]
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Our work uses multivariate optical computing (MOC) to emulate linear discrim-

inant (LD) vectors of phytoplankton fluorescence excitation spectra using a simple

filter-photometer arrangement. Our previous studies have shown that optical mea-

surements based on spectral pattern analysis can be performed using MOC.[18, 14]

At the center of MOC is the design of interference filters that we call multivariate op-

tical elements (MOEs). These interference filters have complex spectral transmission

functions that make possible a variety of multivariate measurements. In the past, the

main application of MOC was the measurement of chemical concentrations in com-

plex samples based on near-infrared, UV-Visible, and Raman spectroscopies of the

samples as an optical, in situ alternative to the post-sampling, multivariate techniques

of partial least squares and principal components regression analysis.[10, 9, 19]

In the present work we present a new application of MOC to the classification of

phytoplankton based on linear discriminants analysis (LDA) of fluorescence excitation

spectroscopy. We first use LDA to confirm that three differently pigmented species

of phytoplankton are differentiable from one another using single-cell fluorescence

excitation spectroscopy. Thousands of possible MOEs were then designed to make

the same measurement in a more robust filter-photometer system. Finally, we show

how the theoretical characteristics of the designs were used in determining which

optical elements were selected for fabrication. Two subsequent manuscripts in this

series describe how the MOE designs were then used to construct and evaluate an

instrument for the in situ classification of phytoplankton.

2.2 Experimental

Calibration Spectra

Single cell fluorescence excitation spectra were collected with a custom-built single

cell fluorometer described by Hill et al.[6] Fluorescence was excited between 350 nm
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and 650 nm at 2 nm increments using a spectral bandwidth of approximately 10 nm

over the excitation wavelength region. Fluorescence emission was detected at 680 ±

5 nm defined with a bandpass filter.

Unialgal cultures of three phytoplankton species were obtained from the Center

for the Culture of Marine Phytoplankton (CCMP strain; recently re-named the Na-

tional Center for Marine Algae and Microbiota) at the Bigelow Laboratory for Ocean

Sciences, East Boothbay Harbor, Maine. These cultures were: Emiliania huxleyi

(CCMP strain 375, E. huxleyi), Thalassiosira pseudonana (CCMP strain 1335, T.

pseudonana) and Synechococcus sp. (CCMP 833, Synechococcus). Cells were grown

in batch culture at 23ÂřC and 80 ?mol photons m-2 s-1 with illumination from the

top and the sides on a 12:12 light:dark cycle in filter-sterilized f/2 culture medium.[4]

Spectra were collected from nutrient-replete cells in exponential growth phase. A

total of 200 single cell fluorescence excitation spectra were used as a calibration set:

77 for E. huxleyi spectra, 46 for T. pseudonana and 76 for Synechococcus. The 200

spectra used for calibration were those that did not exhibit any of the errors de-

scribed in reference [Hill et al.], which include high apparent noise due to cell motion,

collisions with other phytoplankton, and escape of the phytoplankter from the trap

during study.

The critical measurement for using MOC for classification is the ratio of the

recorded fluorescence from a single phytoplankter cell when excitation first passes

through a MOE to that recorded when excitation passes through another filter, either

a neutral density filter or another MOE. Acquiring the MOE measurement referenced

to a neutral density filter is optically equivalent to normalizing the MOE measure-

ment to the total integrated intensity in a fluorescence excitation spectrum over the

excitation band.[17] For the purposes of LDA, the equivalent procedure is normaliza-

tion of the calibration spectra to unit area. Thus, the fluorescence excitation spectra

in this study were normalized to unit integrated area to correct for variations in total
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emission prior to analysis by LDA to verify if classification was practical under this

normalization condition. Figure 2.1 shows the full spectral data set normalized to

unit area.[6]

Figure 2.1 Fluorescence excitation spectra of individual cells of three species. The
area-normalized fluorescence excitation spectra of 77 E. huxleyi (black), 46 T.
pseudonana (yellow) and 76 Synechococcus sp. (pink) cells excited in 2 nm
increments over the range of 350 to 650 nm with a spectral resolution of ∼10 nm.
The inset shows the same spectra renormalized in the wavelength range for best
classification, 550 to 610 nm.

LDA was conducted using the approach described by Bruckman et al., which uses

LDA to compare different continuous wavelength regions for their performance.[2]

The result of this LDA-based analysis is an estimate of the best achievable discrim-

ination among species based on the available calibration spectra as well as the best

continuous wavelength region for performing that discrimination for the three classes

of phytoplankton tested. As a result of this brute-force automated approach to LDA,

the 550-610 nm wavelength region was found to have the most favorable characteris-

tics for distinguishing the three phytoplankton species.
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Multivariate Optical Element Design

In the absence of a native MOC algorithm for approximating LDA, MOEs were

designed using the existing calibration code. This was accomplished by treating the

scores of each calibration spectrum on the linear discriminant vector from LDA as

if they were quantities we would like the MOEs to predict. The existing calibration

code is based on a nonlinear optimization algorithm described previously by Soyemi

et al.[19] that has been modified to run on a computer cluster.[13] This algorithm is

coded in MATLAB; the cluster itself and the software that implements the algorithm

are referred to below as the design suite because it is capable of MOE design using a

variety of different criteria and for a variety of different optical computing styles.[13]

The computer cluster that runs the design suite software consists of three Dell PCs

with a total of 12 processors running in parallel.

The design suite algorithm operates by generating random seed points (i.e., initial

guesses at the structure of a MOE) that are then refined. In operation, the random

seed points for the design suite optimization are constrained in several ways. First,

the materials from which the layers will be designed are predefined as a binary pair

of high and low-index materials. For the work here, this pair was Nb2O5/SiO2. The

second constraint is the total thickness of all seed points, expressed as an approximate

spectral resolution in wavenumbers. In this study, we constrained the stack to start

at 256 cm 1, which for a quarter-wave stack of Nb2O5 and SiO2 is equivalent to a

physical thickness of 7.28 micrometers.[13] The third constraint is in the number of

layers that form the seed stack. In this study, seed stacks contained 11 layers, 6 of

which were high index, and 5 of which were low index.

From this point, the algorithm seeks to optimize the thicknesses of the layers in the

film stack of the interference filter so as to minimize the standard error of calibration

(SEC) for prediction of the phytoplankton’s score on a linear discriminant vector.

Optimization continues until no changes in the film stack yield an improved SEC.
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The design process is repeated many times to form a population of optimized MOE

designs with different characteristics.

The MOE ratio is used to determine the score of the optical spectrum on the

particular spectroscopic vector embodied in the MOE by a simple linear equation

with a gain and offset. MOEs can be designed so that the ratio increases with the

score (a positive gain) or so that the ratio decreases with the score (a negative gain).

In fluorescence excitation spectroscopy, these filters are introduced into the excitation

light path, and fluorescence intensities are the quantities used to construct ratios. The

reference filter in MOC may be an open window, a neutral density filter, or another

MOE. If the latter is chosen, the two MOEs are generally chosen to have opposite

signs of their gain so that sensitivity is increased.

Each MOE is designed to make predictions only under the particular set of de-

sign conditions used for the design suite calculation8. Specifically, the MOEs are

designed to operate in real instruments and measure real (i.e., not ideal) intensi-

ties. Real instruments do not respond equally to all wavelengths of light, so anything

that affects the spectral response of the instrument must be included in the design

process. The choices of optical components in the eventual photometer system are

important in MOC; they should have stable, measurable and reproducible spectral

profiles, although the absolute response is of lesser importance. These components

should be known or selected and their spectral characteristics determined before an

MOE can be designed and manufactured. Figure 2.2 is a schematic of an imaging

photometer that would be capable of collecting the measurements required for ap-

plying optical computing to classifying phytoplankton, including a description of the

optical components.

The optimal excitation wavelength region defined by LDA for discriminating the

three species was 550-610 nm as shown in the inset of Fig. 2.1. MOC with MOEs

provides no intrinsic method of restricting the wavelength region exactly. Instead, the
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Figure 2.2 Schematic representation of an MOC instrument. A white light source
(a) is filtered (b) to give a range of wavelengths suited to classifying phytoplankton.
An MOE designed for that purpose is placed into the beam, alternating with a
reference filter, (REF). A dichroic beamsplitter reflects the excitation toward a
microscope objective (d) and then to a phytoplankter (e). Fluorescence from the
phytoplankter cell is returned to a detector system (f) which integrates the signals
and determines the filter type (MOE vs. REF) for each signal.

wavelength region is defined by selecting an off-the-shelf bandpass interference filter

that approximates the required selection. In this case, a bandpass filter (element b in

Fig. 2.2) produced by Chroma Technology, Inc. (HQ580/60M) was selected for this

purpose.

E. huxleyi, T. pseudonana and Synechococcus sp. are reported by the CCMP to

be 1-10 micrometers in size, requiring a microscope objective to image them individ-

ually (element d in Fig. 2.2). The microscope objective selected was a Nikon 60X

0.7NA plan-fluor objective. Nikon provided transmission values for this objective of

77, 74, 68 and 72% at 550nm, 600 nm, 650 nm and 700 nm, respectively. These

transmission values were fit to a quadratic function, which was then used to estimate

the transmission of the objective at all the discrete wavelengths used in the design
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suite.

The lamp selected to provide excitation (element a in Fig. 2.2) was a 75W Xe

arc lamp (Sciencetech, London, Ontario)(201-100 arc lamp housing, SCI 201 power

supply, OSRAM XBO 75W/2 OFR short-arc lamp). The Xe arc lamp spectral irradi-

ance profile was measured on an automated Spectroradiometric Measurement System

(Optronic Laboratories, Inc. Orlando, Fl; OL Series 750) over a 280-1100 nm range.

The standard lamp used was an OL 200IR Standard of Spectral Irradiance (Optronic

Laboratories S-1041). The detector was a silicon detector (Optronic Laboratories

750-HSD-301EC). An OL 750-M-S monochrometer was used for calibration with 1.25

mm slit and LG-05-600 grating with 600 groves/mm density and blaze wavelength of

500 nm and resolution of 10 nm. The distance from the Xe arc lamp and the stan-

dard lamp was 50 cm to the monochromator entrance for calibration. The Xe lamp

has a relatively flat spectral irradiance profile and maintains a stable power output,

attributes required for MOC.

The excitation and emission light in Fig. 2.2 follow the same path through the

objective so a dichroic beamsplitter (element c in Fig. 2.2) was required to reflect

the selected excitation range from 550-610 nm and transmit chlorophyll a emission

at 680 nm. In this case, a dichroic beamsplitter produced by Omega Optical, Inc.

(640DCLP) was selected for this purpose. Figure 2.3 shows plots of the spectral

characteristics of the optical components assumed in designing the MOEs. Inputs to

the design suite for this study included: normalized and corrected calibration spectra;

the spectral characteristics shown in Fig. 2.3; and scores of each of the calibration

spectra on the linear discriminant vectors previously determined by LDA.

MOE designs consist of alternating layers of materials with different refractive

indices whose optical interference yields transmission spectra mimicking the target

linear discriminant vector determined in LDA. Often this mimicry is functional rather

than exact. The final spectrum of a given MOE design may perform well at repro-
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Figure 2.3 Optical functions of the components discussed in figure 2.2 used for
designing MOEs in this report. a) Irradiance of Xe arc lamp, b) percent
transmission of broadband bandpass filter, c) percent transmission of 60X 0.7 NA
plan-fluor objective, d) percent reflectance of the beamsplitter at 45 degrees. Details
on components are given in the text.

ducing the loadings of the linear discriminant while looking similar to, inverted from,

or only sharing some of the features of the wavelength loadings of the target linear

discriminant function.

The design space exhibits numerous local minima of the SEC merit function, some

of which correspond to designs that would be satisfactory, but many of which are not.

To find sufficient satisfactory designs, the design process is repeated many times in an

effort to find minima corresponding to designs that satisfy a number of performance

criteria at the same time. For this study, 121,982 designs were generated that predict

the scores of spectra on LD1. Generation and optimization of these designs required

approximately 6 hours.
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Statistics that were reported for each design include sensitivity, standard error of

calibration, gain and offset, % transmittance, total thickness, design time, and the

number of layers in the design as well as the thickness of each layer. An analysis of

these designs is given in a following section. The result of the analysis is the selection

for fabrication of one or two target designs.

Curve Fitting

In an analysis below it was necessary to curve fit a distribution using a function

representing a sum of Poisson distributions. Most automated fitting routines assume

the variability for underlying data is the same at all points by default. This was not

appropriate here, but nor was it clear what the underlying variability should be. To

explore this question, the fit was obtained by iteration. In the first iteration, the

default variability was assumed. The result of the fit was used in a simulation of

50,000 distributions that could have resulted from the model if it were correct, and at

each point in the distribution the variability was calculated. It was observed that high

points in the distribution had a standard deviation that was nearly the square root

of the frequency of occurrence and simultaneously near 1/4th of the total range. Low

points in the distribution had standard deviations that were much less than 1/4th of

their ranges and that produced too high a weighting effect in the conventional curve

fitting process. Thus we chose weighting factors that were 1/4th of the range found at

each point in the simulated distributions. After this decision, we repeated the curve

fit with these new weights to each point. The process was repeated until the results

began iterating around the same values. This couldn’t be avoided because the fit

coefficients were not constrained to integer values, but some had to be truncated to

integer values for the simulation. No convergence could be obtained for this reason,

but a narrow range of possible values for each coefficient was determined.

After the curve fitting was complete, we compared these weighting factors to the
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square root of the average distribution number at each point in the model. The latter

approach gave a slightly lower weight to low points in the histogram and a slightly

higher weight to high points than we would have estimated by simulation. We then

conducted another iterative solution in which the variability was chosen as the square

root of the model value at each point, the advantage of this approach being that it

does not require any simulation and truncation to integer values. This approach

converged after a few iterations. The values found in this approach are not the best

"true" values for the fit we have performed because the weights at each point are

not ideal. Nevertheless, they are a significant improvement from the assumption of

uniform errors at all points, and each of the coefficients we found by this approach

was within the range of the coefficients found in the simulation approach.

The approach reported in the section on characterization of unique designs that

follows (vide infra) is the simpler square-root approach because it is far more rapid

(minutes instead of days) but also reasonably consistent with the more rigorous sim-

ulation approach. It is also worth noting that the more rigorous approach based on

simulation is still not completely accurate because the fitting process assumes the

points exhibit a symmetric distribution around their mean value, while in a Poisson

distribution points with low "counts" exhibit skew.

Fabrication

The fabrication of the MOE is done in our laboratory by reactive magnetron sputter-

ing (RMS) using a chamber from Corona Vacuum Coaters Inc. RMS produces films

that can be uniformly and reproducibly deposited onto a substrate.[11] The MOEs

are fabricated by depositing thin layers of materials with different refractive indexes

onto a glass substrate (Corning BK-7). Silicon dioxide, SiO2 (η ≈ 1.45 at 540 nm)

is used as a low refractive index material and niobium pentoxide, Nb2O5 (η ≈ 2.26

at 540 nm) is used as a high refractive index material8. In situ spectroscopy of the
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MOE during fabrication is used to determine the actual thickness and other prop-

erties of the films being deposited in real time. Minor errors in thickness are then

compensated as described previously by Haibach et al.[5] The average time to deposit

a single layer of each material in our laboratory is about one day, depending on the

thickness of the layer. Unlike typical off-the-shelf interference filters, MOEs are not

generally required to exhibit high optical density, which makes it possible to choose

designs with a minimum number of layers.

2.3 Results and Discussion

Linear Discriminant Analysis

Fluorescence excitation spectra for individual cells of the three phytoplankton species

(77 E. huxleyi cells, 46 T. pseudonana cells and 76 Synechococcus sp. cells grown as

described above) are shown in Fig. 2.1; the spectra for each cell are normalized

to unit area over the wavelength range 350-650 nm. Linear discriminant analysis

(LDA) is a method for optimally separating classes by maximizing Fisher ratios. The

combinatorial approach described in reference [Bruckman et al.] showed that the

spectral window 550-610 nm was best for separating the three phytoplankton classes

in this report. The inset graph in Fig. 2.1 shows this sub-region of the full spectrum

with each individual spectrum normalized to unit area over just this spectral window.

The LDA approach described in reference 16 uses principal components analysis as

a preprocessing step before discriminant analysis. The first two principal components

of the spectra normalized over the 550-610 nm region provided perfect classification

accuracy based on leave-one-out cross-validation, and yielded Fisher ratios no less

than 132 for distinguishing any two classes from one another.

Figure 2.4 a shows how the individual cell spectra score on the two linear dis-

criminant vectors that result from LDA using the first two principal components.
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These two discriminant axes are the result of a rotation in the plane of the first

two principal components, but with the rotation done in such a way that the first

linear discriminant provides most of the classifying power of the first two principal

components. Figure 2.4 b shows the spectral profile of this first linear discriminant

vector, and since this vector carries most of the spectral information necessary for

classification, it will be the sole focus of the remainder of this manuscript. Likewise,

the lowest Fisher ratio of 132 was found for distinguishing E. huxleyi cells from T.

pseudonana cells, i.e., these cells are the most difficult of the pairs to distinguish from

one another. Since this classification is the most difficult, the separation of E. huxleyi

from T. pseudonana will be the sole focus of the remainder of this manuscript.

Multivariate Optical Elements

Multivariate optical elements were designed to mimic the function of the linear dis-

criminant vector shown in Fig. 2.4. Most applications of MOC have been directed at

quantitative chemical measurement, so the design suite software that designs MOEs

does so by refinement of initial interference filter structures to minimize SEC.[17]

Ideally, design of MOEs for classification of phytoplankton would be driven using the

Fisher ratio as a figure of merit. But since analytical measurement software already

exists, we chose the simple expedient of designing MOEs to "predict" the scores of

the phytoplankton spectra on the first linear discriminant vector revealed by LDA.

Each design calculated by the design suite has a set of properties that define the

physical properties of the filter and also how well that particular design will function

in predicting the LD score of a phytoplankton. These properties include: optimized

SEC, sensitivity, overall filter thickness, number of layers, individual layer thicknesses,

average transmission, and gain. The SEC establishes how well the MOE is capable

of predicting the score of a phytoplankton on LD1 in an ideal, noiseless measurement

(other than the noise present in the original calibration spectra). Sensitivity describes
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Figure 2.4 Linear discriminant analysis (LDA) results based on inset data in
Figure 2.1. (a) Plot of E. huxleyi (circles),T. pseudonana (squares) and
Synechococcus sp. (triangles) scores of the individual calibration spectra along
linear discriminant 1 (LD1) and 2 (LD2). (b) Spectral profile of the loadings of LD1
in the wavelength range specified by the results of LDA, 550 to 610 nm.
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how much the intensity ratio for phytoplankton fluorescence changes per unit of score

on LD1, and is related to how easily the measurement can be made in the presence

of noise or variability. Total filter thickness is related to the length of time necessary

to fabricate a given MOE, while the number of filter layers is related to the number

of total steps required to complete a given MOE. Average transmission for MOEs

is related to the expected SNR in the measurement, with low transmission yielding

small signals with low signal to noise ratio (SNR). Gain is the slope of the predicted

calibration of the MOE. Unlike the other properties, the maximum number of layers

is established as an environment within which the MOEs are designed, so no criterion

needs to be applied to this property later.

The first step in evaluating the results of a design cycle is to apply criteria to each

of the properties of MOEs. A non-predictive MOE will always have an SEC that is

identical to the standard deviation of the dependent variable in a design run âĂŞ

in this case, the standard deviation of the vector of LD1 scores used in the design

process which was found to be 22.3 units. This sets the upper limit to the SEC that

could be determined for an MOE; the lower limit is zero.

We generally find that peak sensitivity increases monotonically along with SEC,

so it is useful to define the maximum value of SEC that would represent an acceptable

MOE. In this case, we decided that an SEC equal to the standard deviation of the

LD1 scores within a given class of phytoplankton would make a reasonable cutoff

for acceptable MOEs. LD1 scores, as illustrated in Fig. 2.4, varied over a range of

approximately 51 units. On the same scale, the standard deviation within the tightest

single phytoplankton class cluster was 0.793 units, so this was chosen as a maximum

value criterion for SEC. A spreadsheet of designs was sorted by SEC and then all

designs with SEC greater than 0.793 units were deleted. 87,229 of the initial 121,982

designs passed this threshold.

Setting the minimum acceptable sensitivity is the second criterion we applied to
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the selection of MOE designs. In the present case, E. huxleyi and T. pseudonana

differ in their average scores on LD1 by 23.37 score units on LD1. A MOE with a

nominal sensitivity of 1% per unit would vary in its response by 23.37% over this

range. Sample variability is already included in the calibration set, but the future

instrument’s variability and noise are not. The criterion for minimum sensitivity is

then set by the operating conditions of the future instrument in which the MOE

would be installed. As an example, if a 24% change in response were needed to be

sure samples were not misclassified due to instrument variability, then a 1% per unit

lower limit to MOE sensitivity would need to be set. In our case we set a lower

limit of 0.5% per unit based on little more than an educated guess of what the future

instrument’s performance might be like - it had not been constructed at that point -

and deleted the designs that failed to meet this criterion. Only 5607 designs remained

after this threshold was set.

The maximum thickness criterion was set at 6 micrometers to keep fabrication

time down to one week or less in our laboratory deposition chamber. The minimum

average transmittance was set at 6% from previous experience. After these criteria

were applied, 5,279 designs remained.

Among these potentially useful designs are many that are duplicates of one an-

other. The rate at which duplicates of designs are found contains useful information

regarding the number of designs and the likely manufacturability of the design, as

described in a section below. But duplicates must be removed before a true picture

of the number of usable unique designs can emerge. In this case, removal of dupli-

cates left 823 unique designs to consider manufacturing that met all the minimum

criteria. Figure 2.5 shows the dependence of sensitivity of the remaining MOEs on

their SEC. One fact that becomes apparent from Fig. 2.5 is that while the highest

sensitivity tends to decrease along with the SEC, many low sensitivity designs are

found at all values of SEC. All other things being equal, a high level of sensitivity is
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always desirable, so the cream of the crop of designs always lies along the top right

corner of the sensitivity-vs-SEC distribution.

Figure 2.5 Sensitivity vs. standard error of calibration (SEC) for 823 unique
designs meeting selection criteria. Sensitivity is defined as the percentage change in
MOE/REF ratio per unit change in LD1 score. SEC is the standard error of
calibration in units of LD1 score.

A final stage in selecting a MOE for manufacturing is to examine the remaining

designs for their likelihood to be manufactured correctly. This determination is made

by a person skilled in thin film operations and relies on both experience in the art

as well as additional calculations. One of the calculations that can be performed on

prospective MOE designs is to determine what degradation of performance would

result if layers of the resulting design were deposited inaccurately. Such a calculation

can use randomly generated errors within a fixed limit added to the thickness of each

layer, with a recalculation of the SEC for each possible set of errors. After a number of

error vectors have been tested, the RMS SEC for the set can be calculated and used to

compare different designs for manufacturability. On the other hand, art comes into

play when the specialist makes determinations about minimum or maximum layer
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thicknesses that he/she believes make the deposition process particularly difficult.

Following a detailed examination of the available designs, two different MOEs

with opposite gains were selected for manufacturing. These were designs #212 and

#23551, whose initial characteristics are shown in Table 2.1. The re-optimized designs

of the two MOEs are shown in Table 2.1 using the most recent optical constants for our

deposition chamber, with the layers shown from closest to the substrate to furthest

away, and the MOE designed for use with the film stack side of the substrate facing

the incident radiation. Figure 2.6 shows the transmission curves of the two MOEs.

Figure 2.6 Transmission curves of MOE 212 (Dotted line) and MOE 23551 (solid
line) over the wavelength range of 540-620 nm.

The two MOEs, based on the optical constants recorded in our laboratory (nom-

inally 1.46 for SiO2 and 2.24 for Nb2O5 over the 550-610 nm spectral range), were

designed to have the initial structures given in Table 2.2. During deposition, an

optical model of the evolving structure is used to update the effective optical con-

stants of each film material, and the "recipe" (list of layer thicknesses) of the MOE

is reoptimized to take advantage of this improved information. As a result, the final

layer thicknesses of each optical element may differ from the initial recipe, and the
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spectrum of the MOE may differ slightly from the original spectrum expected of it.

However, the target of deposition and reoptimization is not to maintain a particular

spectrum or particular layer thicknesses, but to maintain performance as measured

by the SEC figure of merit. A comparison of the initial and estimated final layer

thicknesses shows that reoptimization changed some layers by substantial amounts,

yet the resulting theoretical sensitivities and SECs have remained relatively stable

through the process of converting a hypothetical optical component into a real device.

The estimated final layer thicknesses were the result of the modeling process during

deposition; attempts to confirm these values through variable-angle spectroscopic el-

lipsometry failed due to the complexity of the film stack and the fact that the films

have slight birefringence.

Table 2.1 (a)Design suite results. The theoretical characteristics of the designs
selected for fabrication are shown. SEC is the standard error of calibration;
sensitivity is given in % change of the ratio of fluorescence excited through the
MOE to that excited through a neutral density for each unit off LD1 score; Gain is
a measure of the slope of the relationship between the ratio and score. Note that
one is chosen with positive gain, and the other with negative gain. (b) Calculated
results after final layer deposited. This shows the same characteristics as part (a)
except with changes to the design following fabrication of the optical elements.

Table 1(a)
Design no. Design Time (sec) SEC Sensitivity Gain No. of Layers

212 0.0297 0.182 0.557 -437.7 8
23551 0.00598 0.210 0.575 366.5 9

Table 1 (b)
Design no. Fab time (days) SEC Sensitivity Gain No. of Layers

212 6 0.173 0.533 -463.3 8
23551 8 0.216 0.567 370.2 9
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Table 2.2 (a) Layer thicknesses for Design 212. This shows the designed
thicknesses of the first 5 layers that composed Design 212 after design (initial) and
after fabrication was completed (final). (b) Layer thicknesses for Design 23551. This
shows the designed thicknesses of 5 layers that compose design 23551 after the
design stage (initial) and after fabrication was completed (final).

Table 2 (a)
Stage High (nm) Low (nm) High (nm) Low (nm) High (nm)
Initial 70.276 112.625 214.794 462.724 537.092
Final 69.215 84.804 197.068 531.806 520.585

Table 2 (b)
Stage High (nm) Low (nm) High (nm) Low (nm) High (nm)
Initial 728.282 514.714 478.465 917.282 435.529
Final 718.964 513.638 471.666 918.782 427.213

Duplicate Designs

Whenever large numbers of designs are generated, duplicate designs are found in the

output. Of the 5,279 original designs that met all our minimum criteria, only 823

were unique.

The fact that duplicate designs occur when we seed the design process with ran-

dom starting points indicates that there are not an infinite number of designs for

MOEs possible under the constraints applied during the design step (e.g., maximum

number of layers; starting thickness of the film stack; type of optical computing, etc).

It is qualitatively observed that the number of unique designs increases with addi-

tional design cycles but with a rate that decreases over time. One question that often

arises in the design of MOEs is: how many unique designs are there? A study of the

statistical distribution of MOE designs allows us to make an estimate of this quan-

tity. The statistics of rare events, such as the finding of even the most readily-found

design, are governed by Poisson statistics.[8] If each design has the same probability

of being found, then the entire ensemble corresponds to a single population governed
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by a single distribution. A less severe approximation is to model the ensemble of

designs as the summation of a small set of populations, within each of which all the

designs have the same probability of being found in a search. We model the distri-

bution of the repetitive designs as such a sum where each population is represented

by a Poisson distribution in the form of Eq. 2.1:

Fr,〈r〉 ≈
〈ri〉re−〈ri〉

r! (2.1)

In this version of the Poisson distribution equation, r is interpreted as the number

of times a given design is repeated in the results and 〈ri〉 is the average number of

repeats for designs in the ith population. 〈ri〉 itself is given by:

〈ri〉 = pi ∗ T (2.2)

where pi is the probability of a given design in population i being found in each

design trial and T is the total number of trials in a particular design run. Populations

of readily-found designs advance in the r dimension more rapidly with T than those

that are less readily found, leading to a separation along the r coordinate.

Using Eq. 2.1 to evaluate the design space for a system modeled to have P

populations of designs, the number of designs repeated r times, represented by n(r),

is:

n (r) ≈
P∑

i=1
Ni
〈ri〉re−〈ri〉

r! (2.3)

where Ni is the total number of designs in the ith design population. The number

of designs that have not yet been found is given by substituting r=0:

n (0) ≈
P∑

i=1
Nie−〈ri〉 (2.4)

Using this approximation and the definition of 〈ri〉 given in Eq. 2.2, the number

of new, unique designs that would be found in a new run of X design cycles is found
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by determining the number of designs that would not yet be found even after an

additional X design cycles:

−n∆ (0) ≈
P∑

i=1
Nie−〈ri〉

(
1− e−〈ri〉X

T

)
(2.5)

In Eq. 2.5, T is the initial number of trials that were run (e.g., 120,000), X is

the number of additional trials, represents the average repetition number for the ith

population after the initial T trials, and −∆n(0) is a measure of the new designs

found in the next X design trials.

After many design cycles have already been carried out, the average number of

repetitions of designs becomes larger, and the first exponential begins to slow the

rate of new discovery of easily-found designs. The designs that are left to be found

tend to become weighted toward the designs that are least likely to be found, so that

in any system that fits a multiple population model, the rate of discovery decreases

faster than exponentially at first. Eventually, it reaches the exponentially-decreasing

rate of discovery expected of the most refractory designs.

To date, there is nothing known about populations of designs that would lead

one to believe that refractory designs have more desirable characteristics than easily-

found designs, so there is no rationale for carrying out extensive design trials once

the majority of designs is already found.

Figure 2.7 is a plot showing the distribution of the repeats of the 823 unique

designs found above. The form of the plot is of the number of occurrences of designs

(y axis) that were repeated a given number of times (x axis). The sum of all the

values on the plot is 823, while the sum of the product of the x and y values for

each point is 5,279, the total number of design trials that met criteria. A fit to this

graph assuming one or two populations yielded large residuals with clear trending. A

four-population fit using Eq. reffr:
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f (r) = a2
ar

1e−a1

r! + a4
ar

3e−a3

r! + a6
ar

5e−a5

r! + a8
ar

7e−a7

r! (2.6)

gave the fit and residuals shown in the caption of Fig. 2.7.

Figure 2.7 Distribution (circles) and multi-Poisson distribution model (line) of
design duplicates of 823 unique MOE designs observed in a run of 120,000 cycles.
Four populations of designs were modeled with 19.1 ± 1.0, 9.5 ± 0.5, 3.4 ± 0.4, and
0.44 ± 0.41 repeats on average. The four populations have 64 ± 13, 242 ± 26, 400
± 50, and 360 ± 150 members, respectively, for a total accessible design population
of 1060 ± 160 designs. The top axis shows the residuals between observation and
model, with error bars representing the square root of the modeled number of
occurrences. The fitting procedure is described in the text. Reduced χ2 for the fit
was 1.16.

The sum of the factors a2, a4, a6 and a8 gives an estimate of the total design

population, including designs not yet found, of 1060 ± 160 designs. If this is the

case, then our trial of ∼ 20,000 design trials identified almost 80% of all designs that

could be obtained within the constraints of our starting points. Eq. 2.4 tells us that if

we ran an additional 120,000 design trials, we could expect to find another 95 unique
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designs, increasing our yield only to 87%. The final 13% would be nearly all in the

most refractory population.

This observation tells us that, if we feel more design work is necessary before selec-

tion preliminary to manufacturing, it would be more fruitful to vary the constraints

on seeding the designs than to continue working in the constraints behind Fig. 2.7.

Further work along these lines is currently under way in our laboratories in an

effort to explore the population model of MOE design and to understand whether

the ease of discovery for different populations relates to their manufacturability.

Theoretical Performance

This manuscript describes the design and fabrication of MOEs for discriminating

three classes of phytoplankton from one another. Each MOE is designed to transmit a

spectral function of the excitation light whose detected intensity relative to a neutral

density can be used to predict the score of phytoplankton’s spectra on the most

important linear discriminant function found using LDA.

The measurement of how a phytoplankton responds to the MOE is made by

measuring its fluorescence intensity in a 10-nm band centered at 680 nm, mimicking

the detection of the calibration instrument. This fluorescence intensity is usually

measured relative to the fluorescence intensity detected when the same phytoplankton

is excited through a neutral density filter. By convention, the neutral density is chosen

to have approximately the same overall throughput as the MOE to avoid as much

detector nonlinearity as possible.

An alternate approach is to measure the MOE-excited intensity relative to that

of another MOE of opposite sign. For example, MOE #23551 above has a positive

gain, meaning that the MOE/ND ratios it produces increase with increasing score

of the phytoplankton fluorescence excitation spectrum on LD1. MOE #212, on the

other hand, produces MOE/ND ratios that decrease with the score on LD1. Since
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the sign of a linear discriminant function is arbitrary, the definitions of which MOE

has a positive gain and which has a negative are likewise arbitrary. The fact that

they are of differing signs, however, is not.

To increase the sensitivity of measurement to the phytoplankton fluorescence ex-

citation spectrum, we choose to measure the ratio of opposite-sign MOEs. Take for

example the ratios expected of E. huxleyi and T. pseudonana in Fig. 2.8 under

different conditions of measurement. A 0.3 optical density filter gives a relatively

flat excitation spectrum over the 550-610 nm wavelength range, and has an average

transmittance similar to the MOEs described above. Figure 8 shows the difference

in ratio responses using the positive-gain MOE #23551 relative to both a 0.3 OD

neutral density (ND) reference filter and also to the negative-gain MOE #212. The

mean values of the MOE/ND ratio are 0.865 ± 0.007, 0.994 ± 0.007 and 1.167 ±

0.005 for E. huxleyi , T. pseudonana and Synechococcus sp. respectively, and the

mean values of the MOE/MOE are 0.926 ± 0.012, 1.177 ± 0.014, and 1.620 ± 0.013

for E. huxleyi , T. pseudonana and Synechococcus sp. respectively. These ratios were

calculated by finding the direct product of MOE #23551 transmission spectrum and

the ND or MOE #212 transmission spectrum with the computed system response to

each of the spectra in the calibration set, where the system response is given by the

product of the phytoplankton calibration spectrum with the spectra shown in Fig.

2.1. The greater difference in ratios for the two most similar species with a two-MOE

measurement versus a single MOE and ND measurement leads to reduced demands

on the performance of the MOC instrument.

Signal to Noise Requirements

How the MOEs will perform in a real instrument is determined by how much noise

is introduced by the measurement. Variability in the ratios determined for phyto-

plankter comes from three sources: (a) the inherent variability of the time-averaged
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Figure 2.8 Theoretical results of classification performance of designed MOE
applied to calibration data. a) Ratio of a single MOE to a 0.3 OD neutral density
filter b) Ratio of MOE 23551 to MOE 212.

fluorescence excitation spectrum of individual organisms, (b) variability in the excita-

tion cross-section and apparent fluorescence quantum yield of an individual organism

with time, and (c) noise due to instrumental factors. The variability of the ratios

calculated from the calibration spectra places an upper limit on the first of these

factors for monocultures that are grown in nutrient replete conditions. The second

factor originates from the fact that the individual measurements from which the ratio

is constructed are recorded at different times if the MOEs are sampled sequentially.

It is well known that phytoplankton fluorescence efficiency responds to an increase in

light level, increasing rapidly as the photoactive centers are flooded and then decreas-

ing gradually as photoprotective pigments are brought into play.[3] The third factor

consists of numerous contributors such as dark noise of detectors, variability of illumi-
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nation, spatial dependence of response, noise due to background signals, nonlinearity

of detector response, and photon shot noise.

The variability in calculated ratios using the calibration spectra for E. huxleyi

and T. pseudonana is similar: approximately 0.01 within each species in Fig. 2.8.

The ratio separation between the averages of the two species is approximately 0.25 as

illustrated in Fig. 2.8. Since the second and third sources of variability listed above

should contribute nearly equally to each MOE measurement, it is possible to estimate

the performance required to give reasonable classification.

We make the estimate by considering only discrimination between two classes (1

and 2) using a single MOE ratio, where the two classes cluster around different average

ratios, one that is lower (R1) and one that is higher (R2), respectively. We then assume

that somewhere between these two ratios lies a point of discrimination, Rd, and that

any phytoplankton with a measured ratio above Rd is assigned to class 2, else it is

assigned to class 1. We further assume that the distribution of measurements in each

class around their average values is described by a normal distribution, although we

are simply using this as a guide and do not require the distribution to be rigorously

Gaussian.

The value of Rd for optimum separation is the point at which the two probability

distributions for the two classes cross one another. For ideal Gaussian distributions,

the distance between the class means and this discrimination point is the same when

normalized to the sample standard deviation of the class in question. To be certain

that at least 95% of plankton belonging to class 1 are correctly assigned by this

method, we require that the sample standard deviation times the one-sided 95%

confidence value of Student’s t, t0.95, be less than or equal to the difference between

Rd−R1. Because of the way Rd is selected, this assures that at least 95% of samples

belonging to class 2 will also be correctly classified.

This can be simplified greatly if we assume both classes have the same sample
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standard deviation. In this case, Rd lies exactly between R1 and R2, and we require

a sample standard deviation, s, such that

2 ∗ t0.95 ∗ s ≤ (R2 −R1) ≡ ∆R21 (2.7)

The necessary sample standard deviation is found by solving for s,

s ≤ ∆R21

2 ∗ t0.95
(2.8)

The sample standard deviation here is that of a ratio between two separate mea-

surements, an MOE and its reference. Each of these measurements can contribute to

the variability of s, and propagation of errors allows us to obtain an analytical expres-

sion in terms of each separate measurement. However, it is likely in most experiments

that ratios never depart greatly from unity because the reference is chosen in practice

to have broadly the same order of overall transmission to avoid detector range and

nonlinearity problems. Since we are simply seeking a guide to the necessary SNR in a

measurement system, it is convenient to further simplify the result by assuming both

the MOE and its reference have nearly the same signals and nearly the same sample

standard deviations. In this case, the standard deviation of the ratio is
√

2 times

the relative standard deviation of one of the measured signals. The relative standard

deviation of the measured signal is simply the reciprocal of the instrument SNR, so

substitution into Eq. 2.8 gives:

SNR ≥ 2 ∗
√

2 ∗ t0.95

∆R21
≈ 4.7

∆R21
(2.9)

This final form assumes we have large samples from which a reasonable sample

standard deviation can be computed. For the case in hand, ∆R21 = 0.25, and we

therefore require a SNR of 19 to distinguish textitE. huxleyi from T. pseudonana

with around 95% accuracy. In the next manuscript of this series we describe an

instrument capable of measuring fluorescence from an individual phytoplankter in a
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few milliseconds with a SNR ratio meeting this requirement. Two more manuscripts

further describe taxonomic classification of phytoplankton with MOC by using the

MOEs designed and fabricated here, places them in the photometer,[20] and applies

them to live cultures of E. huxleyi and T. pseudonana T. pseudonana .[12] The mean

ratios reported there for textitE. huxleyi and T. pseudonana were 0.900 ± 0.029 and

1.179 ± 0.036 respectively, versus the theoretical ratios of 0.926 ± 0.012 and 1.177

± 0.014 reported here. This gives a class separation of 0.278 ratio units compared to

the optical model here of 0.251 ratio units, and standard deviations for the classes

that are limited more by the photometer SNR than by the inherent variability of

the phytoplankter cells, while still meeting the minimum criteria developed above for

successful classification.

2.4 Conclusions

In this chapter I have shown how the results of LDA can be used as a basis for

designing optical elements whose sole job is to score fluorescence excitation spectra

against linear discriminant vectors. This can potentially be used to discriminate

between two classes of phytoplankton in a fluorescence-based instrument. In the

following chapters, I report the design, construction and characterization of a CCD-

based instrument capable of analyzing moderate volumes of water and classifying

phytoplankton found therein. The SNR of the instrument is found to be adequate

for the purpose outlined in this chapter using measurements from a single cycle of a

rotating filter wheel in which the positive and negative MOEs described in Table Ib

are cycled at a rate of ∼17 Hz, for a total measurement time of about 60 msec. A

final published manuscript shows that measurement of E. huxleyi and T. pseudonana

cells under these conditions results in measured fluorescence ratios very close to those

predicted here for each cell type, and with high efficiency for classification.
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Chapter 3

Design and Experimental Protocol of a

Shipboard Streak Imaging Multivariate Optical

Computing Photometer (SSIMOC)

3.1 Introduction

Characterization of phytoplankton size and taxonomic composition is critical to un-

derstanding the biogeochemical functioning of marine ecosystems.[10, 21] Fluoromet-

ric measurement of chlorophyll a is a common approach to quantifying phytoplankton

biomass, but while it is useful for estimating the concentration of chlorophyll a, it

lacks the ability to discriminate phytoplankton taxa or discern cell size.[6, 15, 16]

Currently, the most common approach to determining phytoplankton community

structure is by visual examination (and counting) of species using light microscopy

of fixed samples. Unfortunately, this technique is laborious and time-consuming and

is impractical for systems that vary greatly in space and time.[22, 24, 28] In situ in-

struments that monitor continuously offer a better chance of following phytoplankton

community composition in real or near-real time.[2, 3, 5, 20]

In 1978, Uhlmann et al.[26, 27] discussed the importance of frequent sampling to

track the behavior of a dynamic phytoplankton community. They reported construc-

tion and evaluation of an imaging system that used pattern recognition specifically

for this purpose.[27] Later developments in flow cytometry and imaging, in particular

the development of the charged couple device (CCD) and the personal computer, led
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to more automated, continuous flow instruments.[13, 25, 7, 11] The Imaging Flow-

Cytobot developed by Olsen and Sosik represents the state-of-the-art in automated

classification of phytoplankton by image analysis, eliminating discrete sampling and

providing continuous monitoring of a coastal ocean site near Marthass Vineyard.[18]

For the many organisms that are distinguishable by their size and shape, the Imag-

ing FlowCytobot provides rapid and excellent classification. For those that are not

readily distinguished in this way, additional means of classification are still sought.

All phytoplankton contain chlorophyll a or a derivative thereof, with a fluorescence

emission maximum near 680 nm.[12] As a result, the emission wavelength of 680 nm

is used in most fluorometric applications precisely because it is not unique or taxa-

dependent. This wavelength is also used in cytometers to distinguish phytoplankton

cells from other living or non-living particles.

While chlorophyll a is relatively ubiquitous, phytoplankton taxa vary in their com-

plement of antenna and accessory pigments. These differences are used for taxonomic

classification by identifying biomarker pigments and also by fluorescence excitation

spectroscopy.[20, 4, 29, 17] Conventional fluorescence excitation spectroscopy records

the fluorescence at a particular emission wavelength or band of wavelengths as a

function of the excitation wavelength. Ideally, it is corrected for the source excita-

tion intensity. Unlike fluorescence emission spectroscopy, in which intensity at every

emission wavelength can easily be recorded in parallel, fluorescence excitation spec-

troscopy generally requires scanning, either of a discrete excitation wavelength or

combinations of excitation wavelengths (e.g., via an interferometer). This restricts

the amount of light that can be used for a measurement and slows the process down.

Filter-based or LED-based excitation sources trade information content for speed and

sensitivity by reducing the number of discrete channels that are sampled.

As an alternative to conventional fluorescence excitation spectroscopy, we have

developed a method based on multivariate optical computing (MOC) that uses flu-
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orescence excitation spectral information as a basis for classification via discrimi-

nant analysis. MOC uses multivariate optical elements (MOEs) designed to opti-

cally mimic linear discriminant functions optimized for distinguishing phytoplankton

taxa.[23] These MOEs are special optical filters that provide broad spectral coverage

without sacrificing spectral content, enabling high quality spectral information to be

obtained in real time. Part I of this series describes how these MOEs are designed

and fabricated for a generic instrument.[23]

To make use of MOEs, we have developed a dynamic flow fluorescence imaging

filter photometer. This photometer differs from most in that it uses an imaging CCD

array to record the fluorescence emitted from a phytoplankter, e.g. Emiliania huxleyi

(E. huxleyi), when excited from light filtered through an MOE. Phytoplankton are

drawn into a flow cell and passed through an area of excitation that is modulated

by a rotating 6-position filter wheel. The filter wheel contains up to 5 MOEs, plus

an opaque glass element in the 6th aperture to create a reference position in every

rotation of the wheel.

The aim of this article is to describe the dynamic imaging photometer above,

to characterize its performance and to detail all the mechanical, optical, electrical,

physical, and biological contributions to the variability in its measured signals. In the

sections below, we detail the optical layout, flow cell design, magnification, depth of

field, constraints on filter wheel and flow velocities, procedures for blank subtraction

and flat-field correction, the measurement scheme of the photometer, and its signal to

noise ratio (SNR) as a function of filter wheel frequency. A semi-automatic approach

to extracting fluorescence intensities from the imaging photometer data is presented

and used to determine the sensitivity of the instrument. After that we perform a

quantitative analysis of contributions to noise from 1) arc lamp ripple, 2) aperture-

to-aperture variability, 3) variability in filter wheel frequency, 4) detector read and

dark noise, 5) errors in the flat field correction, and 6) variability due to background
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fluorescence and baseline subtraction error, and 7) photon counting error.

In some cases we find that the SNR of this photometer is not limited by any

property of the photometer itself but by variance in the individual phytoplankter flu-

orescence that increases linearly with signal and integration time. We then consider

possible sources of linearly dependent variance or apparent variance in individual

cell fluorescence through a qualitative analysis of 1) flow direction artifacts, 2) in-

terference effects in the flow cell, 3) photoacclimation effects in the phytoplankton,

4) photochemical decay, 5) detector non-linearity and 6) Brownian rotation. Based

on this analysis we hypothesize a dynamically fluctuating fluorescence quantum ef-

ficiency in the phytoplankton to explain this unanticipated fluorescence variability.

Despite this, we find the photometer can be operated to meet the minimum SNR

requirements set forth in part I of this series.

3.2 Experimental

Instrument Design

A ray-tracing program (OSLOÂő, Lambda Research, Littleton, MA) was used to

aid in designing the optical configuration of the instrument to efficiently transfer the

excitation radiation from the Xe lamp source, through the MOEs and to the sample

plane without distorting the radiation flux over the image plane. A diagram of the

excitation path is shown if Fig. 3.1.

The photometer is designed to be easily transported and operated within the

space restrictions of a small oceanographic research vessel Fig. 3.2. A 75 W Xe lamp

(Sci 200, Sciencetech, Ontario, Canada) with a f/2 condenser is aligned to project the

beam onto a ∼2.5 mm aperture formed by an adjustable iris. The excitation beam is

collimated by a 1-inch f/1 biconvex lens (KBX046, Newport, Irvine, CA) and passed

through a band pass filter (HQ580/60, Chroma, Bellows Falls, VT) to restrict the
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Figure 3.1 The rays travel from left (component 1) to right (component 7),
originating at the source and pass through the optical components to a Nikon 60x
objective. Component 1 is a 75 W Xe lamp (Sci 200, Sciencetech, Ontario, Canada);
component 2 is a1-inch f/1 biconvex lens (KBX046, Newport, Irvine, CA) ;
component 3 is a 1-inch f/6 planoconvex lens (KPX100, Newport, Irvine, CA) ;
component 4 is a 2-inch f/3 planoconvex field lens (KPX199, Newport, Irvine, CA) ;
component 5 is another f/3 planoconvex lens (KPX199, Newport, Irvine, CA);
component 6 is a 2-inch diameter beam splitter (p0643drlp, Omega Optical,
Brattleboro, VT) positioned at a 45Âř angle to the incident light to reflect it onto
component 7 which is a 60X 0.70 NA Nikon infinity-corrected objective.

wavelength band of the excitation beam to 550-610 nm. This is the same filter whose

characteristic spectrum was provided in Chapter 2, Fig. 3. A 1-inch f/6 planoconvex

lens (KPX100, Newport, Irvine, CA) transfers the beam through a 6-position filter

wheel (FW103, Thor labs, Newton, NJ) that houses the MOEs. The filter wheel is

rotated by a brushless DC-servomotor (2057B, Faulhaber, Schonaich, Germany) and

the frequency is set by a PC configurable speed controller (SC 2804 S, Faulhaber,

Schonaich, Germany).

The filter wheel modulates the excitation beam with each "on" cycle passing

through a different MOE. The excitation is then collected by a 2-inch f/3 planoconvex

field lens (KPX199, Newport, Irvine, CA) after the chopper wheel and then further

focused by another f/3 planoconvex lens (KPX199, Newport, Irvine, CA) onto a 2-
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Figure 3.2 Schematic of fluorescence imaging photometer. Ex, the excitation
source is a Sciencetech 500-200 75W Xe Arc lamp and K is a ∼2.5mm aperture.
The lenses, in order of excitation to emission, are as follows: L1 is a 1 in. diameter
biconvex lens with a focal length of 1 in., L2 and L3 are 2 in. diameter planoconvex
lenses with 6 in. focal lengths, and L4 is a 2 in. diameter biconvex lens with a 4 in.
focal length. The filters are as follows: F1 is a 550-610nm Chroma bandpass
(HQ580/60), F2 is a 681±5 nm Omega Optical (HBP10) bandpass, F3 is an OG
530 Schott long pass, and F4 is an OG 590 Schott long pass. BS is an Omega
Optical 2 in. diameter dichroic beamsplitter (640drlp). The filter wheel, W, is a
Thorlabs FW103, powered by a Faulhaber 2057B brushless motor. The objective,
M, is a Nikon, Plan Fluor, 60x magnification, 0.70 NA objective. The sample is
contained in a beaker, S, and is pulled the flow cell, C, by a Cole-Parmer 75211-10
gear pump, G, to a waste beaker, R. The fluorescence emitted by the sample is
passed back through the objective, M, and beamsplitter, BS, and imaged onto a
back-illuminated Princeton PIXIS 1024B CCD.
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inch diameter beam splitter (p0643drlp, Omega Optical, Brattleboro, VT) positioned

at a 45◦ angle to the incident light reflecting 550-610 nm onto the back entrance of a

60X 0.70 NA Nikon infinity-corrected objective and thence onto the flow cell.

The flow cell is made from black Delrin®(DuPont, Wilmington, DE), a material

used for fluorescence measurements because is has low reflectance and fluorescence

characteristics.[1] The flow cell was designed and fabricated in house. The window

of the flow cell is a 22 x 60 mm, 0.17 mm thick glass cover slip (12-544-G, Fisher

Scientific, Pittsburg, PA) and is affixed to the cell with epoxy (Torr Seal, Varian,

Lexington, MA). The cell depth is approximately 200 um and the focus of the objec-

tive is placed approximately at the middle of the cell by focusing through the depth

of the cell from the front to the rear and then reversing to the mid-point.

A gear pump (75211-10, Cole-Parmer, Vernon Hills, IL) with pump head (07002-

25, Micropump, Vancouver, WA) draws the sample through the flow cell at a flow rate

of ∼3 mL/min. The final flow rate for each filter wheel frequency is adjusted slightly

to obtain nine to ten streaks of an individual phytoplankter per image. Phytoplankton

are pulled through the sample cell before passing through the gear pump, this is to

ensure that the pump does not damage the phytoplankton prior to entering the flow

cell.

The fluorescence emission from a phytoplankter at 680 nm returns through the

objective, through the beam splitter, through a 2-inch diameter 695±35 nm band

pass filter (695HBP70, Omega Optical, Brattleboro, VT), and finally through 2-

inch square glass long pass filters (OG530 and OG590, Schott, Elmsford, NY). The

fluorescence is then focused by a 2-inch f/1 BK7 antireflection-coated biconvex lens

(KBX142AR.14, Newport, Irvine, CA) onto a thermoelectrically cooled back-illuminated

1024 x 1024 CCD camera with a 13.3 x 13.3 mm CCD (Pixis 1024B, Princeton Instru-

ment, Trenton, NJ). Hardware binning is performed on the CCD to produce a 256 x

256 pixel image, where each binned pixel is a sum of 16 camera pixels. Binning is per-
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formed to increase the signal strength per picture element and to reduce the readout

time of the image. The digitization rate is set to 100 kHz, the lower-speed/lower-

noise selection available via software. The read noise measured by the manufacturer

for the camera is 4.19 e- rms (about 4.28 photons rms, vide infra). The gain on the

camera is set to its highest setting of 0.98 e-/AD unit for low light conditions. The

magnification of the fluorescence image projected onto the camera was determined

with a 1951 USAF glass slide resolution positive target (Edmond Optics, NT36-275,

Barrington, NJ) and was found to be 25.90±0.16.

The sample flow cell is oriented so that fresh sample enters at the bottom and

flows upward to the outlet. This allows for air bubbles to pass easily through the flow

cell. The area of the flow cell that is imaged onto the camera is given by the area

of the detector (177 mm2) divided by the square of the magnification, or 0.264 mm2.

The effective depth of field is determined by observing whether a streak returns to

baseline between each filter element during the rotation or not. If a phytoplankter is

too far outside the plane of focus, then the circle of confusion of the organism’s image

extends into the dark spaces between the filter elements and makes the integration

of fluorescence intensity for a specific streak difficult. Thus, the effective depth of

field is related to the size of the organism and the flow rate, with an approximate

geometric optics value of 40-80 micrometers for small particles and a sample volume

of 0.0105 - 0.0211 (0.264 mm2 x (40-80 um)) mm3.

The rate at which this volume passes through the image plane of the detector is

determined from the number of rotations of the filter wheel observed during passage

of a phytoplankter through the flow cell. For instance, at 500 rpm or 8.33 Hz, a full

cycle of the filter wheel from one dark reference mark to the next takes about 120

milliseconds. In most cases, the filter wheel frequency and flow rate are set so that

a phytoplankter crosses about 60% of the field of view during filter wheel rotation.

Thus, 60% of a sample volume is displaced in 120 milliseconds in this example, for a
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volume sampling rate of 0.0211 mm3 X 0.60/0.120 sec = 0.106 mm3/sec, or 1.06 X

10−4 mL/sec. Increasing the filter wheel frequency permits an increase in volumetric

flow rate, but decreases the signal for a single organism due to reduced residence time

in the illuminated volume.

Blank/Flat-Field Correction

All CCD images collected use an integration time of 1 second. A "blank" sample

of filtered seawater is collected for subtracting the instrument and filtered seawater

fluorescence from the raw data sets. Raw data images are corrected for the instrument

and filtered seawater fluorescence background by averaging 100 images of filtered

seawater acquired with the flow rate and filter wheel frequency matching that of the

raw data set.

A flat-field correction is applied to a raw data set to compensate for spatial het-

erogeneity of the excitation irradiance profile in the sample cell. A flat-field data

set is acquired using a dense culture of a small (∼5-10 um) phytoplankton (e.g. E.

huxleyi) that is passed through the flow cell at a constant flow rate and filter wheel

frequency (e.g. 0.1 mL/sec and 500 rpm). The flat-field image is acquired with il-

lumination modulated by the filter wheel containing no filters. Each flat-field image

contains hundreds of phytoplankton cells resulting in thousands of streaks, making it

necessary to average 1500 images to produce a suitably smooth flat-field profile for

correcting the raw data. Dividing each pixel in the averaged flat-field image by the

average pixel value across both dimensions normalizes the flat-field array.

Measurement scheme

The measurement scheme for the instrument is illustrated in Fig. 3.3, where a partial

timing diagram is shown for observation of a single phytoplankter, as well as an

illustrated image containing hypothetical data for that organism. In Fig. 3.3A, the

60



www.manaraa.com

timing diagram portion of Fig. 3.3, a time axis is provided that assumes the opening

of the camera shutter occurred at time t=0, and that it will close at time t=1 second.

The portion illustrated in Fig. 3.3A covers a small part of that complete window, as

illustrated by the top panel labeled "CCD Integration" that extends both to the left

and right of the portion illustrated.

During the 1-second integration of the camera, under most conditions, few parti-

cles are observed. Single particles enter the view of the camera randomly, but pass

through it with a fixed velocity. In this illustration, a phytoplankton enters the field

of view of the camera at about time t=0.186 seconds and exits about 0.078 seconds

later. During this time it first appears at the entrance of the visible region and crosses

the entire field of view of the camera, finally exiting on the opposite side of the visible

region. The camera shutter remains open and integrating throughout this transit of

the flow cell by the phytoplankter. During the transit time, the filter wheel is con-

tinuously turning with a rotation period of about 0.049 seconds in this illustration.

During each rotation, five filters are brought into the excitation path in sequence,

labeled with numbers 1-5 in the illustration. Between filter 5 and filter 1 is a blocked

filter opening labeled B in the illustration, during which the phytoplankton is not

illuminated. The timing diagram illustrates that there is no synchronization between

the camera shutter operation, the transit of a phytoplankton, or the rotation of the

filter wheel with the exception that (a) the CCD shutter is open at least as long as

the transit time of a phytoplankter, and (b) the rotation period of the filter wheel

should be somewhat less than the transit time of the phytoplankter so that at least

a full revolution of the filter wheel occurs during its transit through the field of view

of the camera.

Figure 2B illustrates how the "streaks" of fluorescence might appear in an image.

The image shown here illustrates the tracks of two individual phytoplankton cells that

were captured during 1 second of integration by the CCD. The track represented in
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Figure 3.3 Measurement scheme for collecting data using fluorescence imaging
photometer. (A) The x-axis represents the exposure time of the camera in seconds,
where at x=0 the shutter opens and x=1 the shutter closes. The top graphic
(âĂĲCCD IntegrationâĂİ) illustrates the CCD integration time extends well before
and after the timeline shown. The center graphic ("Transit time") illustrates the
time a phytoplankter takes to pass through the region being imaged by the CCD.
The lower graphic ("FW") illustrates the position of the filter wheel in respect to
the excitation beam as a function of time, with each filter opening being shown for
filters 1-5 and a blocked opening marked "B". This timing diagram is for a
phytoplankter that enters the image volume 186 milliseconds after the camera
shutter opens, at a moment when filter 3 of the filter wheel is starting to line up
with the excitation beam. During the approximately 75 milliseconds required for
the phytoplankton to traverse the image volume, the filter wheel completes a little
over 1.5 rotations. (B) An example of the tracks that two individual phytoplankton
cells would produce in the CCD image. The track surrounded by a dashed box is
aligned and scaled relative to the graphics in part A to emphasize the relation
between the observed track and the timing diagram. The track below the dashed
box is an example of a phytoplankter that has entered the image area at a different
time and is unrelated to the track in the dashed box.
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Fig. 3.3A is surrounded by a dashed box. The image is sized and aligned with Fig.

3.3A so that it is easier to see how the filter wheel cycling is related to the fluorescence

that is emitted by each organism. Regardless of the position of the filter wheel when

a phytoplankter enters the view, the position of the blank in the wheel is readily

found, either by eye or by an automatic algorithm. Once this reference position is

found, then a filter is easily assigned to each streak by counting in either direction

from the blank position in the image. Streaks that are completely within the area of

the image are examined, some filters may produce more than a single streak in an

image (in the example, filters 3, 4 and 5 appear twice in the example).

In summary, images captured by the CCD record 1 second worth of events in the

mode of operation described here and in Pearl et. al.[19] Typical transit times are

near 150 milliseconds under normal flow conditions corresponding to filter rotation

frequency near 7 Hz (about 400 rpm). Multiple tracks can be recorded during the 1-

second integration time and the total number of tracks is related to the concentration

of phytoplankton cells in the water sample. There is nothing synchronous about the

measurement, so there is nothing preventing a track from being in progress when

the integration time begins, or being incomplete when the integration time ends,

except that the length of an individual track relative to the integration time makes

it statistically unlikely.

Sample Preparation

For these experiments, we used unialgal cultures of E. huxleyi (strain 375) obtained

from the Center for the Culture of Marine Phytoplankton (CCMP; recently re-named

National Center for Marine Algae and Microbiota) at the Bigelow Laboratory for

Ocean Sciences, East Boothbay Harbor, Maine. The phytoplankton cultures were

grown in 0.2 um filter-sterilized f/2 culture medium, salinity ∼35, at 23◦C. [9, 8]

Illumination was provided from the top and sides at an irradiance of approximately
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80 umol photons m-2 s-1 on a 12:12 light:dark cycle.

The fluorescence imaging photometer was set up as described above except that

no MOEs or blocks were placed in the filter wheel. The culture of E. huxleyi was used

as a test organism to determine the uniformity of fluorescence measured as a single

phytoplankter flows past the image area. In order to maintain uniform excitation

irradiance similar to that anticipated with use of MOEs, a 0.3 OD neutral density

filter (Newport) was added to the excitation path filter set. For a given filter wheel

frequency, an aliquot of the culture was diluted and passed through the flow cell at

a flow rate that allowed a single cell to be modulated into 9-10 individual streaks,

forming a track. Filter wheel frequencies used in this study were 4.17, 8.33. 16.7, 25.0

and 33.3 Hz. A total of 2000 images were collected at each filter wheel frequency.

Streak and Track Delineation

An in-house Matlab ™(R2008b, Mathworks, Natick, MA) program was used to iden-

tify âĂĲgoodâĂİ tracks produced by a single E. huxleyi cell and to sum the streak

intensities. The Matlab code for this program is in Appendix A. A "good" track

was defined as one containing 9-10 complete streaks with distinct boundaries to each

streak. The track highlighted by a black box in Fig. 3.4A is an example of a "good"

track. The program functions by importing the raw images and using a flat-field

correction and blank subtraction (detailed above) to correct the images for small ir-

regularities in the excitation plane as well as background fluorescence. The corrected

images are then processed one at a time by the user who selects images that appear

to be in focus. This initial screening of the data resulted in about 100 images out

of the 2000 that passed visual inspection. From these roughly 100 images for each

filter wheel frequency, 10 representative frames were selected that were similar to one

another in average streak intensity and focus to use for calculating the variation of

integrated streak intensities. This process may introduce bias in cases of low average
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signal strength or high frequency filter wheel settings, which we explain in further

detail in the discussion.

For each image, the integrated streak intensities were found by manually selecting

the top and bottom rows of a track in the 256 x 256 pixel image. Typically, the

fluorescence images of E. huxleyi streaks are about 10-12 pixels wide in the row

dimension. The rows in each column were then summed along the columns to produce

a 256 row vector. This row vector is a cross-section of the track, with each peak

representing a streak. A baseline correction is applied to correct for drift of the

baseline (detailed below), then the column boundaries are identified for each peak

and the values between the boundaries are summed to find the integrated intensity

for each streak. The column boundaries of each peak are determined by identifying

columns in which the value exceeds 3 standard deviations of the baseline, and then

the average distance between adjacent peaks is found and used as the peak boundary.

Continuous columns bracketed by the peak boundaries are summed and stored as the

streak intensities for the track selected in each image.

The baseline subtraction routine used for correcting for slope and offset in the

baseline operates as follows. First, only the y-values enter the routine. An x-axis is

created that is centered so that x=0 corresponds to the point in the y-array with the

highest intensity. The top 50% of y intensities and their corresponding x values are

removed from the raw data in Fig. 3.4B before proceeding to the fitting process. The

remaining data array enters a loop. In this loop, a 3rd order polynomial fit to the

remaining data is performed, and an array of deviations from the fit is created. If

the maximum positive error is greater than 2.2 times the average absolute value of all

the errors, then the point containing the highest absolute error is removed from the

remaining data. This loop repeats until there are no points that error more than 2.2

times the average absolute error based on the most recent polynomial fit. Then the

loop ends and the final curve fit parameters are used with the original x-axis values
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Figure 3.4 Example image from the fluorescence imaging photometer. (A) The
image contains a track of E. huxleyi’s streaks where there are no filters placed in the
filter wheel. Regions of interest for each streak in the track are illustrated (black
outline), along with corresponding regions of the same size just below the
phytoplankton track (gray outline) that were used for image background
measurements. A second E. huxleyi track appears in the middle of the image but is
unrelated to the E. huxleyi track of interest. (B) Plot of summed rows from
example phytoplankton track and reference track areas shown in A. This plot shows
the summed fluorescence intensity of the rows between the upper and lower row
boundaries of the given track.
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to create a baseline for the original y-axis values. The standard deviation of the last

error vector is calculated and multiplied by 3 to serve as a threshold value that can be

used in finding the edge of the peaks in Fig. 3.4B. The baseline subtracted y-values

and this threshold value are then returned to the calling program.

3.3 Results and Discussion

Experimental Results

Figure 3.4 A shows an example image with a filter wheel rotation frequency of 8.33 Hz.

The uppermost horizontal row of highlighted regions in Fig. 3.4 A (black) illustrates

the regions of interest for a particular track made by a single E. huxleyi cell. The

lower horizontal row of highlighted regions in Fig. 3.4 A (gray) illustrates regions of

the image that are used to estimate the variability in the "image background" with

the same pixel area and number of streaks as the E. huxleyi track. Figure 3.4 B shows

the plot of the row sums of each column in both of the regions of interest in Fig. 3.4

A. Both traces in Fig 3.4 B have been baseline subtracted.

At each filter wheel frequency, integrated intensities were calculated for a total of

90 streaks for 10 E. huxleyi cells selected manually from the images as representative.

A total of 90 background signals were likewise extracted from the 10 images by

offsetting the regions of interest from the phytoplankton streaks as described in the

discussion above and for Fig. 3.4 B. The statistics shown in Tables 3.1 and 3.2 were

calculated from these 180 values at each filter wheel frequency.

The second column of Table 3.1 shows the average intensity recorded for the 90

E. huxleyi streaks at each frequency. Values in the third and fourth columns were

obtained by taking the integrated intensities of 9 streaks for a single phytoplankton

track and calculating the single-organism average and standard deviation. The third

column is the standard deviation of the 10 single organism track averages at each fil-
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Table 3.1 Streak statistics. For each filter wheel rotation frequency, the average
integrated area of 90 streaks (9 streaks each for 10 E. huxleyi tracks) is given. s.d.
(inter) is the standard deviation of the average streak intensities for 10
phytoplankton tracks. s.d. (intra) is the average of the standard deviations of 9
streaks in each track. SNR (intra) is the average signal to noise ratio. More details
are found in the text.

Table 1
Hz. Iavg (counts) s.d. (inter) s.d. (intra) SNR (intra)
4.67 43.4 14.1 1.67 31.0
8.33 25.2 13.3 1.37 19.0
17.00 14.0 5.64 1.17 12.5
25.33 11.2 6.47 1.23 8.91
33.33 8.25 1.99 0.959 9.97

Table 3.2 Background statistics. For each filter wheel frequency, the average
integrated area of 90 regions of equivalent size to those in Table I, but chosen from
a nearby region of background near each phytoplankton track, is provided in
column 2. Column 3 gives the standard deviation of the average streak-area
intensities for ten background "tracks". Column 4 gives the average of the standard
deviations of 9 streak areas in 10 background "tracks".

Table 2
Hz. Iavg (counts) s.d. (inter) s.d. (intra)
4.67 61.9 403 937
8.33 72.4 266 815
17.00 -25.1 466 819
25.33 73.6 418 1030
33.33 55.5 246 734
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ter wheel frequency. It is labeled "inter" because it describes the variability between

different E. huxleyi cells. The fourth column is the average of the 10 single organism

standard deviations at each filter wheel frequency. It is labeled "intra" because it

describes the variability when measuring an individual E. huxleyi. The fifth column,

SNR, is calculated by dividing the average signal for a single E. huxleyi by the stan-

dard deviation of the integrated intensities of the 9 streaks for that E. huxleyi cell.

Values for all 10 E. huxleyi at the same filter wheel frequency are then averaged.

Table 3.2 shows values for the background regions of interest in the images where

the E. huxleyi data presented in Table 3.1 were collected. The second column of this

Table shows the average values of 90 equivalent streak windows in the background

for comparison to the nearbyE. huxleyi streaks. The third column is the standard

deviation of the average values in the 10 background tracks; the fourth column is the

average of the standard deviations of the 10 background tracks.

Instrument Signal and Noise Characteristics

Baseline-Subtracted Background Intensity

The first observation from the data in Tables 3.1 and 3.2 is that the average baseline-

subtracted background intensity is statistically indistinguishable from zero. For each

filter wheel frequency, the average background signal in Table 3.2 column 2 is well

within the 95% confidence interval of zero calculated from the standard deviation

in column 3. This is significant because the signals in these background regions are

subject to the same data treatment as the signals of the phytoplankton, and show no

obvious bias from errors in the algorithm used for processing them.

Single-E. Huxleyi Fluorescence Rate

The second observation from the data in Tables 3.1 and 3.2 is that the average

intensity of the fluorescence in a streak scales directly with the illumination time.
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Figure 3.5 shows the average integrated intensity of a streak as a function of the

reciprocal of the filter wheel frequency. The error bars shown in Fig. 3.5 are 95%

confidence intervals of the mean based on the standard deviations in column three of

Table 3.1 . Calculating the normalized value of χ2 is a common test for goodness of

fit; it is calculated to be 0.1 for these data when the standard deviation of the mean

is used in the calculation.[14] This suggests that the apparent uncertainty in each of

the data points is being overestimated, perhaps because the distribution of intensities

is not normal (vide infra), or because of uncertainty in the baseline that is unrelated

to the true intensity.

Figure 3.5 Average streak integrated fluorescence intensity as function of inverse
filter wheel frequency. At each frequency, 90 fluorescence streaks were averaged (9
each for 10 phytoplankter tracks). Error bars are 95% confidence intervals of the
mean. The fitted line has a slope of (1.91 ± 0.21) X 105 counts/sec and an intercept
of (2.6 ± 1.0) X 103 counts. When forced through zero, the slope of the best fit line
is (2.09 ± 0.03) X 105 counts/sec, where all error limits are estimated standard
errors. The normalized value of χ2 for the plot shown is approximately 0.1.

The intercept of the fit in Fig. 3.5 is distinctly non-zero, which could be due to

defects in the baseline fitting and integration routines. In that case one would expect

the values for "background" measurements to be subject to the same error, but there
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is no evidence of such an error. A second and more likely source for the offset in the

y-intercept is bias in selecting E. huxleyi tracks. In general, the visual approach to

selecting E. huxleyi tracks works well when the streaks are easy to pick out in the

images - i.e., when their average SNR is high. But when the average SNR is low, both

manual and automated track selection tends to under-represent E. huxleyi tracks of

low average intensity, leading to a bias toward higher intensity. In fig. 3.5 , this

affects the points to the left of the graph much more than those to the right, leading

to a positive y-intercept.

When the intercept is forced through zero, the slope of the data in Fig. 3.5 is

(2.09 ± 0.03) X 105 counts/sec. The actual individual streaks are a fraction of the full

wheel revolution, since each open window occupies about 8.2% of the circumference

of the filter wheel at the radius of the windows. Thus the detected fluorescence

intensity of the average E. huxleyi in these studies is ∼2.5 X 106 counts per second of

illumination. The value expected in a real experiment would depend on whether the

optical filters placed into the filter wheel have an average transmission that is more

or less than the 50% value of the neutral density used to simulate them for this study.

Intra - vs. Inter- E. huxleyi Cell Variability

The s.d. (inter) is up to an order of magnitude larger for measurements made in E.

huxleyi streaks than s.d. (intra). Generally both values decrease with increasing filter

wheel frequency and decreasing average integrated intensity, and they diverge most

strongly for the lowest frequency/highest intensity. The difference between s.d. (inter)

and s.d. (intra) occurs because the tracks represent different E. huxleyi cells that

often have very different average intensities. The first chapter reported the variation

in integrated fluorescence intensity for 77 E. E. huxleyi cells from a monoculture of

the type used here. In that work, we found the integrated intensity ranged over a

factor of 7.7. Here the factor ranges from 2.5 to 5 in the sets of 10 E. huxleyi cells
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at each filter wheel frequency, depending on the dataset, the range perhaps being

reduced somewhat by intentional selection of "typical" E. huxleyi tracks. The large

spread of individual E. huxleyi cell intensities accounts for the remarkably large value

of s.d. (inter), but has no effect on s.d. (intra) since all the measurements compared

with that statistic are made on a single E. huxleyi cell.

Streak vs. Background Variability

The top graph in Fig. 3.6 shows a comparison of s.d. (intra) for background and

E. huxleyi tracks at our five different filter wheel frequencies, plotted against the

inverse of the filter wheel frequency. Each point represents the average s.d.(intra)

measurement for 10 tracks, with error bars representing its 95% confidence interval.

A small horizontal offset has been applied to the background values (solid circles)

to make it easier to see which error bars go with which points. In all cases the

background values are lower than the E. huxleyi values, but they begin to converge

toward the left in the figure. This is expected because as the filter wheel frequency

increases to infinity (on the left axis of Fig. 3.5), the illumination time for a single

streak approaches zero and the E. huxleyi streak becomes infinitesimally different

from a background measurement. As expected, the background measurements are

not significantly different from one another at different filter wheel frequencies.

Because the experiments at different filter wheel frequencies were done separately

- with new background images, dark frames, and long periods of flushing the flow

cell between sets - the apparent phytoplankton variability and the background vari-

ability are not perfectly consistent across the plot on top of Fig. 3.6. However, the

background measurements were made from data in the same CCD image as the phy-

toplankton measurements, so they share some of the same variability. The result is

that the E. huxleyi streak variability moves with the background variability to an

extent.
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Figure 3.6 (A) Single-streak measurement variability averaged for 10 E. huxleyi
and 10 equivalent background regions. Open circles represent E. huxleyi streaks and
solid circles are equivalent background streaks. Error bars are 95% confidence
intervals for the single-streak standard deviations. (B) Variance of single-E. huxleyi
fluorescence signals, correcting for background variance, based on top figure. The fit
is of the form y=ax, where a = 45.2 counts.
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The primary goal for this imaging photometer is to meet the minimum SNR

requirements set forth in chapter I. In that chapter we show that a minimum SNR of

19 is theoretically necessary to distinguish E. huxleyi from T. pseudonana. Table 3.1

shows that this criterion is met for the two lowest filter wheel frequencies tested. The

highest SNR reported in Table 3.1 is 31.0 which corresponds to a RMS noise level

of 3.2%. To understand the contribution of mechanical and electrical defects in the

instrument itself to the intra-track SNR reported in Table 3.1, we measured several

relevant parameters.

Quantitative Analysis of Mechanical and Electrical Sources

of Noise

Xe arc lamp ripple

The Xe arc lamp intensity was tested for ripple using a silicon photodiode measuring

the intensity after passing through the optics of the instrument, but without modula-

tion by the filter wheel. The ripple was estimated at 0.843% RMS with the dominant

frequency being approximately the 60 Hz line frequency. For measurement times

longer than cycle of the line frequency the RMS noise is expected to be lower. Xe arc

lamp ripple may become a limiting factor if the SNR exceeds 100.

Aperture to Aperture variability

The once-around aperture variability would be defined as the variability in streaks

due to the same aperture on subsequent cycles of the wheel, separated from lamp

flicker/ripple and drift in the filter wheel speed. These could not be easily decoupled

in our experiments. If they could be, the once-around variability for a constant-speed,

perfectly stable light source would be determined by the mechanical stability of the

filter wheel, which is relatively high. We therefore believe the once-around variability
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to be a negligible contribution to the track SNR.

Different apertures on the filter wheel, however, might be in slightly different

physical positions, with different diameters and edge shapes. This variability does

not matter in the intended application because each MOE is viewed through a single

aperture. But in the data reported here, all apertures were treated as if they were

identical. An estimate of the aperture variability, assuming constant speed and a

constant lamp, was made by placing a detector in the position of the flow cell and

recording data with an oscilloscope, averaging over 128 cycles to average out speed

and lamp variability. In each experiment, all apertures were covered except the one

being tested. Experiments were repeated for all six apertures sequentially, and the

integrated intensity detected by a silicon photodiode for each aperture was calculated.

All apertures were found to be very similar, with a relative standard deviation of

0.68% or better between apertures. Aperture to aperture variability is always a

negligible contribution in normal usage, but could limit the apparent SNR in these

studies to approximately 150.

Variability in filter wheel frequency

Drift in the filter wheel speed can also give rise to variability in the total illumination

during a streak. The drift was generally found to be larger in relative terms for lower

speeds. The worst was 3.46% peak-to-peak for a filter wheel frequency of 4.66 Hz, with

a sinusoidal oscillation in frequency having a period of 2.6 seconds. At this filter wheel

frequency, an E. huxleyi cell will typically pass through the observation window in

about 0.36 seconds. Under the most unfavorable conditions (an E. huxleyi cell passing

through at the moment of greatest rate of change in the filter wheel frequency), the

frequency would be expected to change by 2.9% across the image, with the average

measurement showing a relative standard deviation of 0.98%. The deviations from

the average for the filter wheel frequencies of 8.33, 17.00, 25.33 and 33.33 Hz did not
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vary as a simple sinusoid and had a P-P relative deviation of approximately 0.68%,

0.17%, 0.19% and 0.17%, respectively. Assuming a rms deviation from the average

that is 2-1/2 of the peak deviation, the relative standard deviations at these higher

frequencies are estimated to be 0.24%, 0.06%, 0.07% and 0.06%. Varying filter wheel

frequency could limit the SNR to approximately 100 at the lowest speed, or 400 at

the second lowest.

Detector Read and Dark Noise

Dark measurements made over a second of integration time were used to determine

the contribution of the dark or thermal noise of the camera to our measurements.

The standard deviation of the signal on an individual pixel in our images due to

the combination of dark and read noise was found to be 5.2 counts, a negligible

contributor to s.d. (intra). Since this is a source of absolute noise, it places no

fundamental limit on SNR. For the lowest filter wheel frequency, read and dark noise

would limit the SNR to no more than 800 based on the signal recorded for that

condition and estimating 110 pixels for a streak area.

Flat-Field correction error

Because of varying illumination intensity across the field of view, raw fluorescence

intensities are compensated with a flat-field correction, which is itself determined by

measurement of cultured phytoplankton fluorescence. If the flat-field correction ap-

plied deviates from the "true" flat-field, identical signals measured in different regions

of the image will appear to have different intensities which we will interpret as noise.

We estimate the uncertainty in the integrated intensity of a single streak due to flat-

field correction error to be 0.6% based on variability in repeated measurements of the

flat field correction. This would limit SNR to no more than 170.
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Background Fluorescence and baseline subtraction

Background fluorescence and other interference can also lead to noise, so 100 back-

ground images were collected and used to estimate the single-pixel variance from all

sources therein. The average single-pixel variance of the background was found to

be 1530 counts squared (a single pixel s.d. of 39 counts). The average background

fluorescence signal on a single pixel was found to be 1390 counts, suggesting that

most of this background fluorescence noise simply comes from photon counting error.

For a streak area of 110 pixels, and assuming background subtracted streak im-

ages, background fluorescence by itself would account for background intra-track

variance of 2.4 x 105 counts squared, or a contribution to s.d.(intra) in Table 3.2 of

about 490 counts. This represents about one-third of the observed variance between

background streak areas for the same track. Much, if not all, of the remaining back-

ground intra-track variability can be attributed to baseline subtraction error since

the baseline is found from the pixel intensities between the streak areas that are

themselves noisy.

It is likely that the precision of the baseline subtraction can be improved by

reducing the background fluorescence observed in the instrument. The apparent

intra-track phytoplankton fluorescence noise can also be improved this way whenever

it is dominated by background fluorescence noise. As we show below, this occurs at

high filter wheel frequencies, but is not the limiting factor at low frequencies.

If the background fluorescence cannot be reduced it will limit the SNR at the

lowest filter wheel frequency (highest signal strength) to no more than 75. Background

fluorescence is the second most important source of error for MOE measurements

with this instrument. Another factor becomes more important at low filter wheel

frequencies as we show below.
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Photon Counting Error

Figure 3.6B allows us to evaluate the contribution of Poisson photon counting noise,

which sets the lower limit to noise in a photon measurement. Our noise is consid-

erably higher than this limit. For example, at a 4.67 Hz filter wheel frequency, the

average streak intensity is 43,400 counts. At the gain setting of the camera, this is

approximately the number of photons detected in an average streak. The square root

of this value would be the expected fluorescence noise due to photon counting - 208

counts. The actual value is 1380 counts, nearly a factor of 7 greater. The observed

dependence of our fluorescence noise on intensity does, however, follow the trend

expected of photon counting noise, with the variance proportional to the average

intensity (vide infra).

Variance of Fluorescence in Measurement

The variability observed in s.d. (intra) for phytoplankton streaks always exceeds the

variability of the background, and appears to diverge as the illumination time and

the fluorescence intensity increase. If we assume the fluorescence variability of the

phytoplankton is independent of the noise in the background, then we can assert that:

σ2
msmt = σ2

fluor + σ2
bkg (3.1)

where σ represents the intra-track standard deviation, and the subscripts msmt,

fluor and bkg represent the standard deviation of a streak measurement (msmt), in

the phytoplankton fluorescence signal itself (fluor), and in the background (bkg).

Figure 3.6 A gives s.d.(intra) for both the phytoplankton and background tracks,

so we can compute the variance of the fluorescence from Eq. 3.1 by rearrangement.

Figure 3.6 B shows the result for the square of the fluorescence standard deviation -

the fluorescence variance - as a function of the average intensity at each filter wheel

frequency. The data give a linear fit whose y-intercept is indistinguishable from zero
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when performed with no constraints. The best-fit line shown in Fig. 3.6 B is the

fit with the y-intercept constrained to exactly zero. This appears to show that the

variance is linear with fluorescence intensity, but it is equally true that the variance

is linear with the length of time a phytoplankter is excited in each streak because of

the way the data are measured.

We have shown above that the background variance is independent of the fil-

ter wheel frequency. Since the phytoplankton fluorescence variance increases with

decreasing filter wheel frequency, background noise will dominate SNR at high fil-

ter wheel frequencies, with phytoplankton fluorescence noise dominant at low filter

wheel frequencies. The average variance in the background calculated from Fig. 3.6

A is 0.76 x 106 counts squared. The slope of the best-fit line shown in Fig. 3.6 B is

45.2 counts. From the latter slope, the fluorescence variance will equal the average

background variance when the fluorescence intensity equals 17,000 counts. Using the

slope of Fig. 4 when the intercept is forced through zero, we find that a fluorescence

intensity of 17,000 counts corresponds to a filter wheel frequency of 13 Hz. This

represents the crossover frequency below which fluorescence noise dominates SNR.

Of the five filter wheel frequencies tested, the two with the highest SNR are therefore

limited by the variance of the phytoplankton fluorescence. These are also the only two

conditions tested that meet the SNR requirement in chapter 1. Further improvement

of the photometer’s performance requires some better understanding of the source of

the phytoplankton fluorescence noise.

Possible sources of noise and apparent noise in the phytoplankton fluorescence sig-

nals include: inadequate flat fielding; the E. huxleyi cells moving in and out of focus

during transit; interference effects in the flow cell; photoacclimation of the E. hux-

leyi; unstable filter wheel rotation frequency; lamp ripple; inter-aperture throughput

variability; photochemical decay of the pigments in the E. huxleyi cell; non-linearity

of the detector; Brownian rotation of the E. huxleyi cell during transit of the image
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region; and/or some other process.

Qualitative analysis of phytoplankton fluorescence noise

Any source of phytoplankton fluorescence noise or apparent noise would have to

explain the magnitude of the observed noise and also the linear dependence of variance

on signal shown in Fig. 3.6B. The first 8 of the sources in the preceding paragraph can

be rejected because they would lead to a standard deviation of fluorescence intensity

that varies directly with the fluorescence intensity.

Nonlinearity of the detector is not a likely explanation because (a) CCD arrays

are quite linear, (b) intensities are not particularly high, and (c) saturation effects, if

they were observed, would tend to make the variability at high intensity lower than

at low intensity - the opposite of what is observed.

Brownian rotation, which could present different aspects of an E. huxleyi cell

to measurement and change its apparent fluorescence intensity through orientation

dependence of pigment packaging or inner filtering effects, can be rejected as an

explanation because both calculation and experimental observation of E. huxleyi show

the average time for rotation to be more than an order of magnitude longer than the

transit time observed here for even our lowest filter wheel rotation frequency.[30] In

addition the observed variation in fluorescence intensity for a single phytoplankter

given in a previous report from this laboratory is lower than that observed here, even

though the observation time was long enough to allow for full rotation.

This leaves us with the somewhat unfulfilling conclusion that some other process

is responsible for the fluorescence variability. The main clue that we are given is

that this unknown process has the characteristic of having a variance proportional to

average intensity or average illumination time. A dynamically varying fluorescence

quantum efficiency in the phytoplankton is one possible source of a "noise" of this type.

When we think of fluorescence from a phytoplankton, we often implicitly assume that
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all the emitting photocenters are equivalent. But if instead most fluorescence comes

from a small sub-population of the photocenters, and if that sub-population were

in a dynamic equilibrium of some type, the fluorescence variance would scale with

measurement time as observed here. Most chlorophyll a fluorescence observed from

phytoplankton comes from the photosystem II complex, which is only an intermediate

step in photosynthesis. If the photosynthetic site (photosystem I) is unavailable for

some reason, this could have a large effect on the apparent fluorescence efficiency

of nearby photosystem II complexes. We may be able to test this hypothesis by

temperature or chemical perturbations to phytoplankton. A study is underway in

our laboratory to investigate this question.

3.4 Conclusions

In chapter 1 we concluded with the required specification of an instrument SNR to

enable multivariate optical computing to distinguish E. huxleyi from T. pseudonana.

The necessary value was SNR âĽě 19. This manuscript has described an instrument

suitable for the optical elements designed and fabricated in the previous manuscript

that demonstrates SNR of the requisite level. In Pearl et. al[19], we show results for

the instrument in real measurements attempting to classify individual E. huxleyi and

T. pseudonana.
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Chapter 4

SIMOC Image Analysis and Deblurring

Algorithm

4.1 Introduction

Many instruments for phytoplankton classification are based on either image analysis

or fluorescence spectroscopy.[3, 4, 6, 7, 8, 10, 11, 12]. Automated interpretation of

data from these instruments involves development of algorithms for image analysis or

spectral analysis.[3, 4, 6, 7, 11, 6, 13, 14, 15, 16, 2] Research in imaging-based clas-

sification is often confounded by similarities in morphology between phytoplankton

species.[3] Wide ranges of methods and approaches have been applied to automatic

analysis with varying levels of success at overcoming this and other problems.[16]

Fluorescence excitation spectroscopy provides an alternative approach. Because

of its sensitivity to accessory pigments, fluorescence excitation spectroscopy provides

classification using variables that differ from those used in image analysis and pro-

vide information about taxonomic status of a phytoplankton cell that is independent

of morphology. We are exploring an approach to phytoplankton classification that

combines some of the power of imaging with fluorescence excitation spectroscopy

to classify phytoplankton. In this chapter, we focus on the automatic analysis of

spectroscopic content in images from a fluorescence imaging photometer described in

chapter 3.

The main features from the fluorescent images are the integrated intensities of each

streak within a selected track and the width of the streaks. Using the blank position in
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the filter wheel as a reference, each streak can be assigned to a filter in the filter wheel.

The ratios of the streak intensities are then used to assign the phytoplankter track

a species or class as described in chapter 2. Along with the spectral characteristics,

we can also extract physical characteristics of the phytplankter in a given track. The

physical size of the chloroplast, region of the cell containing the chlorophyll. This

added physical feature can then be used as an additional measure for classification as

the relative size of each species is well understood.[5, 16] This is not a trivial task in

the measurement scheme of the fluorescence imaging photometer described in chapter

3 due to there being no way to guarantee that the phytoplankton pass through the

flow cell in the focal plane of the objective. Here, a deblurring algorithm is described

that attempts to deconvolve the image of an ‘in focus’ streaks from the out of focus

streaks in an image.

4.2 Experimental

Phytoplankton cultures and Data Collections

The details of the phytoplankton culture conditions can be found in chapter 2. The

details of the imaging photometer can be found in chapter 3. The filter wheel of the

imaging photometer has 6 openings that rotated counter-clockwise from the prospec-

tive of the lamp. One of the filter wheel positions contained a 1-inch substrate painted

black to block the light. This blacked out substrate is used as a reference that can

be seen in the image to correlate the fluorescent streaks to each of the MOEs. The

order of the MOEs as they rotated into the light path is MOE1-, MOE1+, MOE1+,

MOE1-, ND. The labels on each MOE, 1+ and 1-, represent MOEs built to mimic the

operation of the first linear discriminant vector in the 3-species separation described

in chapter 2, E. huxleyi, T. pseudonana and Synechococcus sp. ND represents a 0.3

Newport neutral density filter. Duplicate MOEs were loaded into the instrument to
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improve the SNR of the measurement by repetitive sampling.

In the design of MOEs, performance is characterized by the ratio of fluorescence

intensity when a phytoplankter is excited through a MOE to fluorescence intensity

when excited through a ND. The difference between MOEs labeled 1+ and 1- is that

the predicted ratio values increase with the scores of each calibration spectrum on

the first linear discriminant for 1+, while the ratio values decrease with the scores

for 1-. Since the sign of a linear discriminant is arbitrary, the absolute sign of the

MOE has no particular significance. Regardless of the sign of the linear discriminant,

however, MOEs with different signs have opposite responses.

For these measurements, the filter wheel was rotated at 6.67 Hz. The pump speed

was adjusted to give approximately 9-10 streaks during the transit of a phytoplankter

across the field of view. During a set of measurements, files containing 500 16-bit

image frames with integration times of 1 second were acquired. A total of 20 such

files for each organism constituted the complete sample data set. Additional files

characterizing the background, dark count and flat field were also acquired.

Image Preprocessing

All algorithms were written in the MatLab®R2011b 7.13 (Mathworks, Inc., Natick,

MA) programming environment and utilized predefined functions in Image Analysis

and on a Dell PC running Windows 7.

Preprocessing was performed as follows. Data sets of 16-bit binary image files

of 256x256 pixels matrix were read using a MatLab®routine. The first sets of data

imported included 3 sets of 500 image frames of a dense culture of E. huxleyi to use

for a flat-field correction. Details on how the flat field images are acquired may be

found in the experimental section in chapter 3.

A corrected and normalized flat field frame, 〈f〉, was then obtained by subtracting

the average background frame from the average flat field frame and dividing the result
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by its average pixel value. The normalized flat field measures the distribution of

excitation radiation in the image plane.

Sample measurements were typically loaded in 500-frame image data files, along

with a 100-frame file of sample background images acquired directly before or after

each sample measurement. An average sample background image, 〈b〉, was calculated

from the 100 sample background images.

Each sample image was then processed pixel by pixel according to 4.1 to generate

a corrected image.

Sc = Si − 〈d〉
〈f〉

(4.1)

where Sc is a single corrected image and Si is a single uncorrected sample image.

Streak Integration and Deblurring Algorithm

This section outlines the approach and steps of the algorithm we termed the Streak In-

tegrator for Multivariate Optical Computing (SIMOC, version 2.0), the Mablab®code

is shown in Appendix A. After the raw data files are imported and preprocessed as

described above. Each image is first analyzed for fluorescent tracks that are well

modulated. 4.1a is an example of an image containing three visible track that are

nearly overlapping to the left of the image.

A well defined track is determined by finding the average and standard deviation

of the 256 rows for each of the 256 columns in an image. Then, a baseline-corrected

standard deviation and threshold are calculated as described in chapter 3. 4.1B shows

the column stander deviations of the three tracks on the left side of the image in 4.1A.

Track Identification and Streak Integration

The track boundaries are identified by the baseline-corrected standard deviation cross-

ing the threshold. Each column value of the standard deviation (solid line 4.1B) was

89



www.manaraa.com

Figure 4.1 A) Preprocessed data image. There are 3 tracks of the coccolithophore
Emiliania huxleyi visible in this image. The solid black rectangle indicates the
region of the image defined by the algorithm as a track and is used as an example in
the data analysis below. B) A plot of the corrected standard deviation along the
rows for each column of the image in Fig. 1A. The solid black line corresponds to
the baseline corrected column standard deviation and the dotted line is the
calculated threshold.
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scored against the threshold (dotted line 4.1B), assigning a score of 0 for standard

deviations below the threshold and 1 for standard deviations equal to or greater than

the threshold. Within a single image, moving from left to right, the left edge of a

track is indicated by the change from 0 to 1 in the score array while the right edge

is indicated by the change from 1 to 0. Each contiguous set of 1s identifies columns

containing a potential track. This identifies all potentially usable tracks. The column

boundaries of each track are compiled into a cell array where each cell corresponds to

the image number from the data set. In each cell the row number corresponds to the

track number in the image and the first columns represents the left boundary value

and the second column represents the right boundary value for the track.

From this point in the algorithm, each track is viewed and analyzed individually.

For clarity, a track is a matrix, 〈T 〉, extracted from the corrected image and is 256 rows

long and the column width defined by the track selection described in the previous

paragraph. Next, a track is analyzed for streaks. 4.1A is an example an image with

three tracks that nearly overlap one another, a scenario which makes analyzing each

individually a difficult task. For instance, in 4.1B the column standard deviations

between the tracks does not fall to the baseline, indicating that streaks within each

track share a common column pixel. This can be seen in the image by the track

in the black box region . The track is slightly curved, resulting in it sharing part

of column 191 with the track to the left of it in the image. This is problematic for

calculating integrated streak intensities by summing along the columns of a track as

we described in an earlier version of the algorithm, SIMOC, version 1.0, described

in Pearl et. al.[9] To resolve this, each streak is found in the image by utilized the

image processing toolbox in MATLAB. The streaks are treated as objects located in

an image with a fairly uniform background. A matrix mask of 0’s and 1’s is created,

where the 1’s correspond to pixels of a streak and 0’s to the background so that when

multiplied with the track matrix results with only the streak pixels having a value
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not 0.

The mask is created by duplicating the track area and converting it to gray scale,

redefining the matrix with values ranging from 0 (black) to 1 (white) with the lowest

pixel value in the original data array assigned 0 and highest assigned 1, shown in

4.2B. This will preserve the pixel to pixel differences in the image but allow removes

negative pixel values from the image. Next, the contrast between the top 1% and

bottom 1% of the pixels is increased, resulting in the background being reduced

and the pixels with signal being increased as shown in 4.2C. A derivative is then

calculated across both dimension of the contrasted image using the ‘canny’ method,

which finds objects by the identifying local maxima in the image derivative.[1] This

method defines the majority of the perimeters of the streaks in the track as well as

the perimeters of parts of the streaks in the adjacent track, shown in the binary image

4.2D where 1’s indicate the perimeter edge of an object. The perimeter of each object

is filled out, shown in figure 4.2F. This is done by looking at the 3x3 array around

each pixel of 4.2D and if the central pixel in the 3x3 array is a 0 bordered by pixel

values of 1, it is replaced with a 1.Figure 4.2E shows the ‘filled’ in objects of 4.2D.

From here, the objects that have a fully contained perimeter are ‘filled’ in by making

the pixel values within the perimeter equal to 1 as shown in 4.2F. The streaks are

then identified from the objects as having a total pixel area greater than 60% of the

average area of the 5 largest objects. Those with smaller areas are removed and the

final mask is generated, as shown in 4.2G. Then the mask (4.2G) is multiplied with

with original data image (4.2A) leaving only streaks 4.2H.

The data array from 4.2H is then used to identify the order of the streaks in

reference to the blank filter and integrate their signals. This is done by generating

an array 〈Tc〉 by summing track image along the column dimension and identifying

the row values in 〈Tc〉 where a streak begins and ends. By multiplying the original

image array by the mask, the background and blank spot pixel values in 〈Tc〉 are all
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Figure 4.2 The image area of a track presented in Fig 1A. 256 rows by 11 columns.
A) Red-Green-Blue (RGB) image of the track area. B) Gray scale image. C)
Enhanced gray scale image D) Binary image of all the objects found in the image E)
Binary image with the perimeter of each object filled out F) Binary image with the
interior of each object filled in G) Binary image with where the object of
non-streaks removed

equal to zero so the transition from the background to the beginning of a streak is

simply identifying the rows where there is a transition from a zero value to a non-zero

value. Equally, a transition from a non-zero value to zero is indicative the end of a

streak. A row vector, 〈Ti〉 is then generated where values of 1 indicate a streak and

0 indicate the background values in 〈Tc〉. The blank spots and streaks in the track

image are identified by finding the lengths of the streaks and background areas 〈Ti〉.

The continuous background areas in 〈Ti〉 that are longer than 1.25 times the length

of the average streaks are identified as blank positions. 4.3 illustrates the MOEs in

the filter wheel and their assignment to streaks in the track.

The boundaries of each streak defined in 〈Ti〉 are then used to sum each streak in
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Figure 4.3 Diagram of of the filter wheel with MOE placements and their
assignments on a theoretical track mask. The wheel is turning in a counter clock
wise direction and vertical the flow direction in the image would result in the first
streak after the blank to be assigned to MOE1-.

〈Tc〉 and ordered according to their distance from the blank positions. The integrated

streaks are then stored in a cell array, 〈Si〉. The critical measurement for classification

of E. huxleyi and T. pseudonana is the ratio of fluorescence intensity recorded when

the excitation beam passes through MOE 1+ to that recorded when the beam passes

through MOE 1-. Two of each of these MOEs are loaded into the filter wheel. The

fluorescence responses for each MOE of the same type are averaged and then the ratio

is calculated.

Deblurring

As described earlier, the out of focus streaks in an image are due to the photyoplankter

passing through the flow cell out of the focal plan of the objective. The portion of the
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algorithm discussed below tries to recreate the image with ‘in focus’ streaks. Images

of fluorescent microspheres (Fuoresbrite, Polysciences Inc., Warrington, PA) are used

replacements for phytoplankton because their diameter is known and thus the pixel

widths of ‘in focus’ streaks is also known.

4.4A is an image of a 6 micron microsphere. The average width of the streaks in

this image, measured with the algorithm described in the previous section, is 9 pixels

or 18 microns. In chapter 3 it was shown that image pixels are equal to 2 microns.

4.4B is a deblurred image with an average streak width of 4 pixels or 8 microns.

Figure 4.4 A) Corrected data image of a 6 micron microsphere that is out of focus
B) Deblurred image formed by deconvolving the image in A. C) Corrected data
image of a 6 micron microsphere that is in focus. D) Deblurred image formed by
deconvolving the image in C.

The deblurring algorithm deblurs the image using the Lucy-Richardson deconvolu-

tion method. The assumption made here is that the image is blurred by a disk shaped
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degradation pattern, so a point spread function that most resembles this degradation

pattern can be used to recreate the original, unblurred image. The degree in which

the beads (or phytoplankton) are out of focus has a tremendous impact on the size

of the point spread function. Since the degree of blurriness in not know or consistent

between tracks, disk point spread functions with diameters ranging from 2 to 10 in

0.5 increments are applied to all tracks. This approach results in a minimum streak

diameter for the optimal point spread function because the image begins to blur after

this optimal diameter is reached.

4.3 Results and Discussion

MOE Ratios

Images containing fluorescence streaks of E. huxley and T. pseudonana were recorded

and analyzed using the approach described above. This automated analysis resulted

in 858 E. huxley ratios and 703 T. pseudonana ratios. The mean ratio of fluores-

cence intensities for excitation through (MOE1+/MOE1-) for E. huxley was 0.8992

± 0.0049, while T. pseudonana had a mean of 1.1956 ± 0.0052 (Table II). 4.5 shows

a plot of the measured ratios for each species. An examination of this plot shows the

ratios for each prediction are centered on their respective means, but with outliers.

With few exceptions, these outliers were found to result from defects in analysis by

SIMOC v2.0. The theoretical ratios from chapter 2 for textitE. huxley was 0.926 ±

0.012, while textitT. pseudonana had a mean of 1.177 ± 0.014.

An outlier was defined as having a ratio outside two standard deviations of the

sample population. The images that contained tracks with ratios outside this range

were found and examined to determine if the calculated ratios were accurately deter-

mined by the program. There were 37 T. pseudonana and 44 E. huxley ratios tested

as outliers, and 29 T. pseudonana and 36 E. huxleyi tracks showed obvious defects
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Figure 4.5 Distribution of measured ratios for the coccolithophore Emiliania
huxleyi (black, 703 ratios) and the diatom Thalassiosira pseudonana (yellow, 858
ratios). The inset is the frequency distribution of the measured ratios where 81
outlier ratios were visually inspected and 65 were removed due to defects in the
image that were missed by the algorithm.

that were visible in the authorâĂŹs opinion but passed the tests by the program.

The ratios resulting from the 65 tracks that showed obvious defects were removed.

The defects in the tracks include: the camera integration terminating during the ac-

quisition of the final streak in the track which resulted in a fraction of the integrated

intensity of the streak; a phytoplankter track that flowed in and out of the plane

of focus which caused the later streaks in the track to be in a different state of fo-

cus than the earlier streaks in the track which results in abnormally shaped streaks

with inconsistent integrated areas; and streaks that overlap the same image area as

a track from a phytoplankter that passed through the flows cell at a different time

in the integration. Table 4.1 shows the number of ratios, calculated means, standard
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deviation of the means and standard deviations for the distributions after the outliers

were removed.

Table 4.1 Mean (x̄), standard deviation of the mean (σx̄), standard deviation (σ)
and the number of samples (N) for E. huxleyi and T. pseudonana.

x̄ σx̄ σ N
E. huxleyi 0.8992 0.0045 0.07 858

T. pseudonana 1.1956 0.0052 0.09 703

The inset of Fig. 5 shows the ratios of T. pseudonana and E. huxley, with the

defective ratios removed. The separation of mean ratios for the two classes was

0.296. The sample standard deviations for the E. huxley and T. pseudonana ratio

distributions shown in Table 4.1 were 24% and 30% of the difference between the

class mean ratios, respectively. While the results showed that the predicted ratios

from chapter 2 were within ± 3% of the measured mean ratios here, the standard

deviation of each distribution resulted in 137 misclassifications. The cause of the

high standard deviations in most likely due to the SNR of the photometer and the

inability of the algorithm to distinguish poor SNR tracks from good SNR tracks. In

chapter 2, a SNR of 19 was required for classification. Here, it is uncertain the value

of each track’s SNR. Advancements in the photometer and algorithm are underway

to improve the SNR determination of each track.

The algorithm miscalculates ratios for approximately 4.2% of tracks for a variety

of image processing and timing factors, but improvements are still underway and

during the writing of this thesis, a subsequent SIMOCv3.0 coded in the Myrick lab

has improved the image analysis algorithm and thus improving the selection of streak

areas. The newer version has shown a decrease in the number of outliers and an

increase in identifying tracks with very weak fluorescence signals while at the same

time rejecting them if their SNR is below the theoretical SNR threshold. The descrip-

tion and results of SIMOCv3.0 are currently in preparation for publication where the
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application of SIMOCv3.0 to data shown in Chapters 5 and 6 will be presented.

4.4 Conclusion

An algorithm was developed to identify phytoplankton tracks and extract size and

integrated intensities from the streaks of tracks in images collected on the SSIMOC

photometer. Using this algorithm to analyze images collected from cultures of E.

huxley and T. pseudonana, we verified the theoretical model presented in chapter

2 and successfully classified E. huxley fluorescent tracks from T. pseudonana tracks

when excitation light was filtered using the MOEs fabricated in chapter 2.
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Chapter 5

Determining Phytoplankton Size from

Fluorescence Images

5.1 Introduction

A key determination for characterizing the phytoplankton community structure is

accurately identifying the number of cells per mL, or mg of chlorophyll a per mL,

are in a sample of ocean water. The field of cytometery is built around accurately

making this measurements, often calibrated with standard particle per cells.[12, 5,

9, 8, 1, 3] The FlowCytobot developed by Sosik and Olsen, is represents one of the

most technically advanced flow cytometers to date for phytoplankton analysis.[6, 4]

The basic idea of a flow cytometer is to count the number of particles in a sample

using a selective feature of the particles of interest to trigger, such as a fluorescent

marker.[10]

The FlowCytobot uses a 532 nm solid state laser for a light source and directs

the light through a sheath designed flow cell that passes sample at a high rate, one

particle at a time. As a phytoplankton particle passes through the sheath flow, the

phytoplankton absorbs the 532 light and emits 680 nm fluorescence. The fluorescence

is detected by a photomultiplier tube and when there is sufficient fluorescence inten-

sity from a phyotoplankton particle, it is "counted", if a non phytoplankton particle

passes through the system, there will be no chlorophyll a fluorescence and it will not

be "counted". This manner of triggering ensures the selectivity of phytoplankton over

other particles in the sample.
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One of the goals of this project is to tie the information gathered by the SSIMOC

method to a high resolution, high confident method. The FlowCytobot currently

operating at MVCO location is ideal for this purpose. The question is how to compare

a fluorescence measurement collected on the SSIMOC to the FlowCytobot? Both

methods are detecting particles in the size range of tens of micrometers and collecting

fluorescence intensities. This would allow the SSIMOC and FlowCytobot to record

the same fluorescence measurements and for the SSIMOC to calibrate the range of

fluorescent particles to the FlowCytobot.

The SSIMOC filter photometer described in chapter 3 can be treated as a flow

cytometer with a few adjustments to the filter placements. The difficulty associated

with the analysis for determining cell counts per mL is accurately estimating the

flow volume. The FlowCytobot uses a sheath flow designed flow cell which ensures

accurate counting of the entire sample. The SSIMOC flow cell in chapter 3 only

views a fraction of the sample passed through the flow cell, making it a challenge to

true volume sampled. In addition, the depth of field is a function of the size of the

sample, meaning that smaller particles are at a lower volume than larger particles.

In chapter 3 it was estimated that the depth of field is between 40 - 80 micrometers.

In a data set of 500 images, this estimate puts the range of water sampled between

42 - 85 uL. This range of sample volume makes determining an accurate cells/mL of

the water sampled difficult. This chapter describes a procedure for using cell counts

determined from the FlowCytobot on the same water and using the same excitation

band as the SSIMOC in July 2012.

5.2 Experimental

The data was collected with the imaging photometer described in chapter 3. The

goal for the first generation instrument is to operate on a small research vessel in

Open Ocean or coastal waters. The data collected for this report was collected while

104



www.manaraa.com

on board a Woods Hole Oceanographic research vessel, RV Tioga, at the Martha’s

Vineyard Coastal Observatory near Woods Hole, MA on July 2012. A total of 3000

images from 0.5 mL of coastal water was analyzed with the SSIMOC using 532 nm

excitation, and 8.12 mL of sample was analyzed with the FlowCytobot.

The photometer was operated as described in chapter 3 except that the exci-

tation band pass filter used in that study was replaced with a 532 nm bandpass

filter (HQ532/10, Chroma, Bellows Falls, VT ). The purpose of the 532 nm filter

for excitation is to replicate the 532 nm solid state laser used for excitation as the

FlowCytobot.[6] With this SSIMOC filter photometer setup, the same basic parame-

ters are used for measuring the chlorophyll a fluorescence as the FlowCytobot, making

it possible to use the FlowCytobot as standardized method for cell counts/mL to de-

termine the correct cells per mL sampled by the SSIMOC filter photometer. Figure

5.1 shows the footprint of the SSIMOC filter photometer on the RV Tioga and the

MVCO tower located about 1 mile east of Martha’s Vineyard.

Figure 5.1 A) A picture of the SSIMOC filter photometer on a lab bench on the
RV Tioga. B) A picture of Martha’s Vineyard Coastal Observatory tower,
positioned about one mile off the eastern coast of Martha’s Vinyard, MA.
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Image Analysis

The fluorescence images were analyzed using a modified version of the algorithm

described in chapter 4 and in Pearl et. al.[7] The algorithm takes advantage of the

distinct frequencies in the profile of the streaks in a track produced by the modulation

of the filter wheel. As phytoplankton flow through the image area, phytoplankton

that are in the image plane of the objective are clearly defined and produce a strong

amplitude in the frequency domain. When phytoplankton are slightly above or below

the image plane, the streaks begin to merge but maintain a frequency pattern that is

identifiable. Phytoplankton that pass through the image area far outside the image

plane will have a track with no identifiable modulated streaks and will not be iden-

tified. A full description of this algorithm will be presented in a manuscript under

preparation for submission.

5.3 Results and Discussion

Cell counts

Samples from the July 2012 cruise to MVCO analyzed simultaneously by both the

FlowCytobot and SSIMOC contained particle fluorescence fluorescence intensity re-

sults. The results of these data can be used to measure the efficiency of the SSIMOC,

assuming that the FlowCytobot has 100% efficiency.

Figure 5.2A is a histogram plot of the log base 10 of the chlorophyll a fluorescence

(measured in Volts for the FlowCytobot and photon counts for the SSIMOC) vs the

log base 10 of the cells per mL for both. Log-log plots are often used when identifying

relationships between two sets of empirical data.[2] Here, the goal is to identify where

there is overlap between the SSIMOC and Flowcytobot in chlorophyll a fluorescence

intensity. Simply, what fraction of the total population observed by the FlowCytobot

is the SSIMOC viewing. We are assuming that the FlowCytobot detects all the
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phytoplankton in a given volume, which is a safe assumption from the years of field

operation and studies conducted by the FlowCytobot.[6, 11] Setting the bin widths

of both histograms to 0.05 log units, we can overlay the two and estimate a region of

log space where the two populations overlap as shown in Figure 5.2B. Figure 5.2B is

made by manually shifting the SSIMOC distribution along the x-dimension by 4.95

log units and the FlowCytobot along the y-dimension by 0.1191 log units and used

as a guide for the starting parameters for a fit described below.

Equation 5.1 and 5.2 show a relationship that can be drawn from the shifting the

two histograms.

IF CB = C1 ∗ ISSIMOC (5.1)

Equation 5.1 shows the relationship between the fluorescence intensity measured

by the FlowCytobot (IF CB) ,measured in volts, and SSIMOC (ISSIMOC), measured

in photon counts, are offset by a constant C1.

NSSIMOC = C2 ∗NF CB ∗ η(IF CB) (5.2)

Equation 5.2 shows that a relationship in the number of cells detected by the

FlowCytobot and the the SSIMOC photometer and can be used to correct the volume

sampled estimate of the SSIMOC photometer discussed earlier due to the depth

of field issue. Where NSSIMOC is the number of cells detected by the SSIMOC

photometer, C2 is a constant volume offset, NF CB is the number of cells detected

by the FlowCytobot and η(IF CB) is the efficiency of the SSIMOC as a function of

FlowCytobot chlorophyll a fluorescence intensity.

Taking the log of each term in equation 5.1 results in 5.3:

log(IF CB) = log(C1) + log(ISSIMOC) (5.3)
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Figure 5.2 A) The histogram plot in red of the log of the cell density (cell
counts/mL) vs log of the chlorophyll a fluorescence (volts) collected during a July
2012 cruise from the FlowCytobot. The histogram plot outlined in black is of the
log of the cell density (cell counts/mL) vs log of the chlorophyll a fluorescence
(photon counts) collected during a July 2012 cruise from the SSIMOC filter
photometer. B) Same histograms as in (A) except that the SSIMOC plot is shifted
to the left 4.95 log units and the FlowCytobot plot is shifted up 0.1191 log units.
This is done to visually determine if the plots have overlapping features, which are
visible in (B) between -0.6 and 0.9 volt log units.
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The shift in the x-dimension shown in Fig. 5.2 is equal to C1.Estimating the

correction for cell counts in the SSIMOC distribution is not as straight forward as

converting the FlowCytbot’s volts to photon counts. This is due to the uncertainty

in the number of cells detected. The total volume measured by the FlowCytobot

was 8.12 mL, giving a much greater certainty to it’s counts/mL measured at each

chlorophyll a fluorescence intensity than the roughly 0.3 - 0.6 mL estimated by the

SSIMOC. To give a better certainty, the y-dimension of fig. 5.2 was converted back to

a linear scale and 95% confidence intervals were calculated for each SSIMOC. Then,

a best-fit was calculated for the plot shown in fig. 5.3 using the 95% confidence in-

tervals as weighting factors giving more influence to the points with higher certainty.

Figure 5.3 is the counts (y-dimension) for each histograms plotted against each other,

SSIMOC in counts and FlowCytobot in counts/mL. If this plot were a straight line

with a slope of one running through the origin, then the two histograms would per-

fectly match and the volume for the SSIMOC would be 1 mL. With the y-intercept

restricted to run through the origin, the slope of the best fit is the volume correction

for the SSIMOC. The region of the histograms used in the fit was determined by eq.

5.2, where the offset, C2, is the slope of the line if fig 5.3 when the efficiency, η(IF CB),

is unity. Using the region visually identified in manual shifting of the log/log plot

described earlier, the region of overlap were bins 62-92 (FlowCytobot bins -0.9 to 0.6

volts). The slop of the line is 0.534 mL. This volume estimate puts the depth of field

imaged in the flow cell at 60 microns, the center of the estimate used in chapter 3.

Figure 5.4A is the histogram plots for the corrected SSIMOC volume (red) and

converted FlowCytobot chlorophyll a intensity to photon counts (blue). Figure 5.4B

is the ratio of these two histograms at each bin. This shows that at chlorophyll a

fluorescence counts above 104, the two methods are nearly detecting the same number

of particles within the 95% confidence level, but below 104 counts the SSIMOC’s

efficiency drops linearly.
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Figure 5.3 The bottom plot is of the SSIMOC counts vs the FlowCytobot
counts/mL for each bin in the histograms from Figure 2, and the the red line
represents the best fit line with a χ2 of 0.0252. The error bars represent 95%
confidence intervals for the SSIMOC. The top plot represents the distance between
the fit and each point.

5.4 Conclusion

These results show that the SSIMOC, with corrected sample volumes, is detecting

the same number of particles as the FlowCytobot. This is important for a couple of

reasons. It shows that the classification results from the SSIMOC, when using MOE

filter sets, is sampling a complete subset of the phytoplankton population within a

given intensity range. The second reason is that we have shown that the measure-

ments made from the SSIMOC can be directly tied to another classification method.

We have demonstrated that the volume sampled by the SSIMOC can be calculated

from the relationship between the phytoplankton cell counts from SSIMOC images

and the cell density results determined from the FlowCytobot. The corrected volume
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Figure 5.4 A) Histogram plots for the corrected SSIMOC volume (red) and
converted FlowCytobot chlorophyll a intensity to photon counts (blue) B) Plot of
the cell counts per mL efficiency of the SSIMOC method compared to the
FlowCytobot where a value of one indicates a perfect efficiency.
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estimates revealed that our original depth of field estimate of 40 - 80 microns in

chapter 3 included the calculated depth of field of 60 microns.
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Chapter 6

SSIMOC field testing

6.1 Introduction

The community composition of the phytoplankton is highly variable in both space

and time. Monitoring the variability within the phytoplankton community structure

is a key component to understanding the carbon flux in the ocean.[3]

The traditional method for phytoplankton classification is by microscopy, either by

human identification or automated methods.[8, 5] Recent development of automated

techniques such as the Video plankton Recorder by Davis et al.[7], the Harmful Algal

Bloom Buoy by Culverhouse et al.[6] and the FlowCytobot by Sosik et al.[15, 18]

have shown great promise and innovation in the area of phytoplankton community

structure. These methods perform classification largely on the basis of morphological

differences between groups of phytoplankton and give remarkably high quality results,

upwards of 90% identification accuracies.[7, 6, 15, 18] They represent the leading effort

in this area but require a significant amount of power and communication from a ship

or coastal station.

As described in the previous chapters of this dissertation, our lab has demon-

strated a spectroscopic method using fluorescence excitation spectroscopy that looks

to highlight the genetic differences between phytoplankton expressed by the varying

composition of photosynthetic pigments.[21, 20, 16] We call the first generation of

the method the shipboard streak imaging multivariate optical computing instrument,

or SSIMOC. Multivariate optical computing (MOC) is an optical method that aims
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to correlate chemical or physical properties of a sample to spectral characteristics

spanning multiple wavelengths.[19] The working components of MOC are multivari-

ate optical elements (MOEs), which are specially designed interference filters with

transmission functions that mimic the functionality of linear discriminant analysis

(LDA).[21, 14] The MOEs operate as filters in a filter photometer system. Examples

of filter photometers used for phytoplankton analysis use mainly a filter wheel, so that

each filter can be brought into the optical path fixed filters, or a system of narrow

band LED for excitation.[17, 2, 1, 9, 13] Unlike typical filter photometers, the MOEs

do not select single wavelength bands for excitation but perform distinctive vector

manipulations on the same wavelength band. The advantage of full spectral or mul-

tiwavelength excitation allows for both higher throughput and coverage of multiple

pigment excitation bands. The wavelength region for excitation is identified by LDA

as the optimal region for classification, (i.e. 570-650 nm).[4]

Like most spectroscopic techniques, the goal of classification using this method is

not to surpass or compete with the cytometry or microscopy methods which are cur-

rently in use or in development, but to add a low cost and highly flexible spectroscopic

technique to compliment the developed network of tools in the area of phytoplank-

ton monitoring. The complexity of phytoplankton community structure in terms of

organism size and special variability makes it difficult to imagine a single approach

that will cover the entire population range. There is an inverse relationship between

selectivity and sensitivity with sample throughput (meaning either you do a good job

of identifying the components of a very small sample, milliliters, or sample large vol-

umes with low distinguishability between components in the sample.[cite] The goal of

the SSIMOC method is to make a remotely deployable instrumentation that promote

and add value to existing stationary methods such as the FlowCytobot. This chapter

entails the next step in the development of the method in it’s application to natural

water samples at Martha’s Vineyard Costal Observatory (MVCO).
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6.2 Experimental

The photometer was operated as described in chapter 4, but with different MOE

filter sets. Below we will discuss the design of each MOE filter set and break down

the samples analyzed with each set. Briefly, the MOEs are housed in a filter wheel

that modulates a light beam , which is then reflected off a dichroic beamsplitter

and focused through a 60x objective onto a flow cell. The fluorescence emission of

chlorophyll a at 680 nm is then passed back through the objective and the dichroic

beamsplitter and imaged onto a CCD array. An example data image and orientation

of the MOEs in the filter wheel is shown in figure 1.

Figure 6.1 Left: Example of data image collected on SSIMOC photometer used at
MVCO. Right: Example of MOEs in the filter

Multivariate Optical Elements

The process for the design and fabrication of the MOEs is described in chapters 1

and 2. For the cruises described below, three different sets of MOEs were designed
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and fabricated and shown in 6.1. (A) is a set designed to classify the three species

of Emiliania huxleyi (E. huxleyi), Thalassiosira pseudonana (T. pseudonana) and

Synechococcus sp., (B) is a set designed for the six species of E. huxleyi, T. pseudo-

nana, Synechococcus sp., Rhodomonas salina (R. salina), Amphidinium carterae (A.

carterae) and Dunaliella tertiolecta (D. tertiolecta), (C) is a single MOE designed

to differentiate R. salina in either a nitrogen replete state of growth or nitrogen

deplete state of growth, and (E) is a set designed for the three classes of phyto-

plankton diatoms, dinoflagellates and haptophytes. The diatoms were represented

by Phaeodactylum tricornutum (P. tricornutum), Skeletonema costatum (S. costa-

tum), Thalassiosira weissflogii (T. weissflogii), T. speudonana, the dinoflagellates by

A. carterae, Prorocentrum minimum (P. minimum), Lingulodinium polyedrum (L.

polyedrum), and the haptophyte E. huxleyi.

Sets A and B were designed using single cell fluorescence excitation spectra col-

lected as described in Hill et. al.[12] The use of single cell spectra in the first two sets

of MOEs was desired because the filter photometer is designed to collect images on

a single cell basis instead of a bulk mixture. While this ensures that each spectrum

collected is of a singe cell, it is very labor and time expensive to collect hundreds

of spectra needed for MOE designs. For this reason, it was desirable to determine

if there are significant differences in the spectrum of single cells to the spectrum

collected on a monoculture.

Bulk monoculture spectra were collected on a Hitachi Fluorescence Spectropho-

tometer (F-4500, Hitachi, Tokyo Japan). For these experiments, we used unialgal cul-

tures of each species obtained from the Center for the Culture of Marine Phytoplank-

ton (National Center for Marine Algae and Microbiota) at the Bigelow Laboratory

for Ocean Sciences, East Boothbay Harbor, Maine. The phytoplankton cultures were

grown in 0.2 um filter-sterilized f/2 culture medium, salinity ≈ 35, at 23◦ C.[11, 10]

Illumination was provided from the top and sides at an irradiance of approximately
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80 umol photons m-2 s-1 on a 12:12 light:dark cycle.

Research Cruises

Five sampling cruises were undertaken to test SSIMOC at the Woods Hole Oceano-

graphic Institution’s Martha’s Vineyard Coastal Observatory (MVCO) near South

Beach in Edgartown, Massachusetts on March 23, 2011, July 6, 2011, November 22,

2011, March 6 2012 and July 7, 2012. The imaging photometer was placed on a

lab bench on board the RV Tioga. Samples were collected from the waters near the

MVCO at a depth of 4m. Water samples were obtained with a CTD rosette lowered

to a four-meter depth. The water was sampled with Nisikin Bottles and returned

to the surface where the water was transferred to the instrument and data collected

within minutes.

Particle size

Fluorescence imaging allows us to obtain physical as well as spectral information from

phytoplankton. While we are not able to collect absolute cell size from the images,

we can say something about the size of the chloroplast within the cells. The size of

the cells that are visible by the SSIMOC are primarily defined by the magnification

of the objective and size of the CCD chip. Selecting the magnification of the of

the objective is a balance of desired magnification and numerical aperture. The

60x/0.7 N.A objective used for this study was selected because of its relatively high

throughput and magnification allowed for imaging phytoplankters in the size range

of 3-20 microns. If the phytoplankter passes through the cell at the focal plan, then

the size of the chloroplast is determined by magnification and pixel width, but if it

passes slightly out of the focal plan then the pixel width alone would overestimate

the size. A manuscript detailing the algorithm is in preparation at the time of this

thesis. Briefly, the algorithm calculates the intensity profile of a streak in the row

119



www.manaraa.com

dimension and uses the shape of the streak profile to estimate the width in pixels

at half max intensity. A great deal of effort and trails with multivariate calibration

techniques was vetted, but the simple model of half width at full max resulted as the

best model for predicting size.

6.3 Results and Discussion

The SSIMOC was tested on a total of five cruises to MVCO. The first cruises were trial

runs to test the instrumentation and determine the parameters of the SSIMOC, as

well as gain insight from the proven experience of the scientist at Woods Hole Oceano-

graphic Institution. The MOEs used in the March 2011, July 2011 and November

2011 were first generation MOEs. During the first cruises, we came to the conclusion

that models that included three and six species were inadequate in gathering com-

munity structure information. The MOE set used in the final cruises, March 2012

and July 2012, were designed to cover a broader range. Instead of attempting to look

species specific, we group species together into similar classes: Diatoms, Dioflagellates

and Haptophytes.

The five cruises, even though different MOEs were used, allowed for quantita-

tive evaluation of the MVCO water with the SSIMOC method shown in 6.1. The

total number of images collected from each cruise day varied from 9,000 to 14,000

and was influenced by the weather and amount of time the ship could spend at the

MVCO. The total number of tracks detected and number of apposite tracks from

each cruise both were greatly influenced by the SNR of the imaging photometer due

to the set up as well as the overall photosynthetic properties of the phytoplankton

community structure. The pigment concentration, and thus photosynthetic efficiency

and fluorescence intensity, decrease at a function of solar radiation intensity and daily

duration.

As described previously, the approach selecting which phytoplankton species the
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Table 6.1 The rows in column 1 are the month and years of the cruises that the
SSIMOC participated in to MVCO. Column 2 is the MOE filter sets that were used
on each cruise described in the text. D is a 0.3 optical density filters used a reference
and the subscripts refers to the Linear Discriminant vector each MOE is designed to
mimic as described in chapter 2. Column 3 is the total number of data images
collected on each cruise. Column 4 is the number of fluorescent particles detected by
the SSIMOC. Column 5 is the number of tracks detected that have a high enough
SNR for MOC calculations. Column 6 is the calculated cell density based on the
total number of fluorescent particles detected and the total number of mL analyzed.

Table 1
Date MOE Filter Set # of Data Images # of tracks # of apposite tracks Estimated Cells/mL

March, 2011 A1, B1, C1 10,600 9,659 1,034 2,700
July, 2011 B1, B2, A1 14,000 19,690 1,966 20,000
Nov, 2011 A1, A2, D 9,500 10,506 462 14,200

March, 2012 E1, E2, D 11,600 4,736 212 6100
July, 2012 E1, E2, D 9,000 7,946 106 15,900

MOEs were designed to classify changed over time. In 2011, the goal was to classify

similarly pigments phytoplankton species using filter set A. The next set of MOEs

were designed to classify six species of phytoplankton over a wider pigmentation

range in an attempt to characterize a larger portion of the community. But, this

approach was not suitable for the diversity of the phytoplankton community structure

found in the waters near the MVCO. The phytoplankton community structure of

MVCO consists of 100’s of species of phytoplankton over a large range of physical

sizes, 1 - 100 microns in size. Also, the presence of chain forming diatoms further

complicates the community structure. Discussions with collaborators Dr. Heidi Sosik

of Woods Hole Oceanographic Institution and Dr. Tammi Richardson, identified that

the greatest effect for the SSIMOC is to classify the community structure at the level

of phytoplankton class instead of phytoplankton species. The March 2012 cruise

saw the first implementation of a set of filters designed to classify on the level of

phytoplankton class instead of phytoplankton species, diatoms, dinoflagellates, and

haptophytes.
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Three Class MOE Results

Fig. 6.2 shows a plot of the MOE results of the March 2012 cruise with the 212

apposite tracks.

Figure 6.2 Classification distribution of 200 phytoplankton tracks collected from
MVCO in March of 2012. The dashed regions represent 95% confidence intervals
calculated from measurements of cultured dinoflagellate (red), diatom (green), and
haptophyte (black) when interrogated through the 3 class MOEs. The solid circles
represent the MVCO natural population recorded using the 3 class set MOEs, the
size of the circle represents it’s relative size (largest circle represents 44 microns and
smallest circle represents less than 3 microns) and color gradient represents average
fluorescence intensity over all 5 streaks. Unknown samples that fall within the 95%
confidence limits would be classified as either a dinoflagellate, diatom or
haptophyte. Unknown samples that fall outside these bounds would be classified as
not belonging to any of these three class.

Fig. 6.3 shows a plot of the MOE results of the July 2012 cruise with the 212

apposite tracks.
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Figure 6.3

6.4 Conclusion

The goal of the SSIMOC research cruises was to identify where improvements to

the SSIMOC filter photometer needed to be made and for the group of chemists

working on the project to gain a better understanding of the environment in which

the SSIMOC would be operating. The five cruises resulted in significant improvement

to the robustness of the filter photometer. The development of designing MOE sets

for classifying phytoplankton on the class level was an important result from this

study.

We have shown the capability of the SSIMOC photometer to operate on a research

vessel and collect data images of coastal ocean waters containing natural phytoplank-

ton. This demonstrates the usefulness and ability for optical computing to operate

in this environment for the purpose of classification. Further development of the SSI-
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MOC photometer is underway in the Myrick group to move the instrumentation from

the lab of a research vessel into a smaller and more robust enclosure with the goal

to operate in a more remote setting similar to the FlowCytobot and other operating

ocean monitoring phytoplankton instrumentation.
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Appendix A

SNR Matlab Code

1 function [goodstrk,bestframes,prd,prdback,intspot,intspotback,br,

goodback,gdstrk,temp0,temp1,pbegin,pend,varargout] =

manstrkanalysis_back2(varargin)

2 %Combination of IMOC Streak RSD functions. The function combine

manual and

3 %automatic techniques for integrating streaks collected from the IMOC

4 %instrurment for measuring the RSD of a background and flat field

corrected

5 %image with no filters in any of the filterwheel positions.

6

7 %Inputs:

8 % order of varargin=(normarray,bkg); varargout=[bkg,normarray];

9 %

10 % varargin− This is used to call in the number of

11 % variables required, which can change depending on the new flat

field or new background.

12 % If a new ff and bkg are needed, then varargin = [].

13 % If a ff and/or bkg exist for a data set,

14 % then "normarray" and "bkg" will be in the workspace and will need

to be

15 % added in the order specified in line 2.

16

17 %Outputs:

18 % goodstrk = selected tracks used for SNR calculations

143
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19 % bestframes = frames containing tracks used for SNR calculations

20 % prd = array of 1's and 0's defining the streaks in the tracks.

21 % prdback = array of 1's and 0's defining the areas in the background

22 % offset from the streaks in the tracks.

23 % intspot = array of integrated streaks.

24 % intspotback = array of integrated "background equivalent" streaks

25 % br = row vector representation of integrated columns in a track

26 % goodback = selected background tracks used for SNR calculations

27 % gdstrk = output track values for a "good" track.

28 % temp0 = location of blank or non−streak areas in the tracks

29 % temp1 = location of streaks in the tracks.

30 % pbegin = begining columns of a streak.

31 % pend = ending columns of a streak.

32 % varargout = bkg and normarrays used for correcting raw images.

33

34 if nargin==0

35 [normarray,bkg,datap,data]=plankread();

36 elseif nargin==1

37 [datap,data,bkg]=plankread3(varargin{1}); %varargin{1}=normarray;

38 elseif nargin==2

39 [datap,data]=plankread2(varargin{1},varargin{2}); %1=normarray, 2=

bkg

40 end

41

42

43 [goodframes] = framesort(allframes);

44 [goodback,goodstrk,bestframes,gdstrk] = strkarea_back2(goodframes);

45 [br] = peakthreshold2(goodstrk);

46 [prd,prdback,intspot,intspotback,temp0,temp1,pbegin,pend]=

product_back2(br,goodstrk,goodback);

47

48 nout = max(nargout,1)−13;

49 if nout==1
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50 varargout{1}=bkg;

51 elseif nout==2

52 varargout{1}=bkg;

53 varargout{2}=normarray;

54 else

55 varargout=[];

56 end

57

58 end

1 function [goodframes] = framesort(allframes)

2 %The function "framesort" is used to select frames that contain

streaks

3 %that are in focus, straight and bright from a background subtraced,

4 %flate field corrected image. Typically 'allframes' should be a 500

frame

5 %array that was produced after background and flatfield correcting a

6 %500 image .SPE file collected on the IMOC instrument. The resulting

7 %'goodframes' array is a preliminary sorted variable that will be

further

8 %wittled down by "strkarea".

9 % JS 8/16/11

10 % for i=1:500

11 % allframes(:,:,i)=allframes1{i};

12 % end

13 a=size(allframes);

14 j=0;

15 for i=1:a(3)

16 pcolor(allframes(:,:,i));

17 shading interp;

18 drawnow;
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19 title(num2str(i));

20 b=input('keep (1) or move on (space)? ','s');

21 if b=='1'

22 j=j+1;

23 goodframes(:,:,j)=allframes(:,:,i);

24 end

25 end

26

27 end

1 function [goodback,goodstrk,bestframes,gdstrk] = strkarea_back2(

goodframes)

2 %The function 'strkarea' is used to extract only the rows of intrest

around a

3 %streak. This function is performed on the variable resulting from

4 %"framesort", 'goodframes'. It requires the user to identify with

the mouse

5 %where the top and bottom of the streak is in the image by clicking

on the

6 %uppermost part of the streak and dragging the mouse to the lowest

part of

7 %the streak. The resulting arrays are 'goodstreak'

8 %and 'bestframes'. 'goodstrk' is an array where each row

9 %contains the sum of the columns selected from a single frame in

10 %'goodframes'. The rows in 'goodstrk' are corrected by "autobase4"

to

11 % normalize the peaks to a comon baseline and remove the artificial

intensities

12 % below the baseline. 'bestframes' is an array where is frame

coincides with the

13 %same row number in 'goodstrk' as a reference. 'goodstrk' is used in
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14

15 % Autobase7 is used so the background baseline is fitted correctly

without

16 % bias (JS 10/14/11)

17

18 figure(1);

19 figure(2);

20 a=size(goodframes);

21 gdstrk(1:a(3),1:256)=0;

22 gdback(1:a(3),1:256)=0;

23 goodstrk(1:a(3),1:256)=0;

24 goodback(1:a(3),1:256)=0;

25 gthold(a,1)=0;

26 for i=1:a(3)

27 mx=max(max(goodframes(:,:,i),[],1));

28 mn=min(min(goodframes(:,:,i),[],1));

29 temp=(goodframes(:,:,i)−mn)*64/(mx−mn);

30 figure(1)

31 image(temp)

32 title(num2str(i));

33 r=getrect;

34 r;

35 ybot=floor(r(2));

36 ybot;

37 ytop=ybot+ceil(r(4));

38 ytop;

39 %backtop=ytop+(ytop−ybot)+5; %take background values from

pixels above

40 %backbot=ytop+5; %streak

41

42 backtop=ybot−5; %take background values from

pixels below streak

43 backbot=ybot−5−(ytop−ybot);
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44 backtop;

45 backbot;

46 gdstrk(i,:)=sum(goodframes(ybot:ytop,:,i));

47 gdback(i,:)=sum(goodframes(backbot:backtop,:,i));

48 end

49

50 %added to autobase the streaks before selecting

51

52

53 for i=1:size(gdstrk,1)

54 [outy,thold]=autobase5(gdstrk(i,[1:256]));

55 [outyy,tholdyb]=autobase7(gdback(i,[1:256]));

56 goodstrk(i,:)=outy(1,:);

57 goodback(i,:)=outyy(1,:);

58 %goodback=gdback;

59 gthold(i,1)=thold(1,1);

60 gtholdb(i,1)=tholdyb(1,1);

61 end

62

63 % for i=1:size(gdstrk,1)

64 % base=min(gdstrk(i,:));

65 % gdstrkbase(i,:)=gdstrk(i,:)−base;

66 % end

67

68

69

70

71 bestframes=goodframes; %added bestframes to coincide with

72 for i=a(3):−1:1 %image # in bestframes ref with row # in

goodstreaks

73 figure(2)

74 image(temp)

75 title(num2str(i));
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76 plot(goodstrk(i,:));

77 b=input('keep (1) or throw (space)?','s');

78 if b=='1'

79 else

80 goodstrk(i,:)=[]; %added bestframes to coincide with

81 goodback(i,:)=[];

82 gdstrk(i,:)=[];

83 bestframes(:,:,i)=[]; %image # in bestframes ref with row #

in goodstreaks

84 gthold(i,:)=[];

85 end

86 end

87

88

89 for i=size(goodstrk,1):−1:1 %image # in bestframes ref with

row # in goodstreaks

90 figure(2)

91 image(temp)

92 title(num2str(i));

93 plot(goodback(i,:));

94 b=input('keep (1) or throw (space)?','s');

95 if b=='1'

96 else

97 goodback(i,:)=[]; %added bestframes to coincide with

98 goodstrk(i,:)=[];

99 gdstrk(i,:)=[];

100 bestframes(:,:,i)=[]; %image # in bestframes ref with row #

in goodstreaks

101 gthold(i,:)=[];

102 end

103 end

104

105 for i=1:size(goodstrk)
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106 goodstrk(i,257)=gthold(i,1);

107 end

108

109 for i=1:size(goodback)

110 goodback(i,257)=gtholdb(i,1);

111 end

112

113 end

1 function [br] = peakthreshold2(goodstrk)

2

3 % Purpose: Compare each pixel to a threshold and write the score (0=

below

4 % and 1=above) to 'br'. 'br' is used in "product" to get only the

values

5 % of the peaks and remove the values of the baseline from the

variable

6 % 'goodstrk'.

7

8 k=size(goodstrk);

9 for i=1:k

10 for j=1:256

11 br(i,j)=goodstrk(i,j)−goodstrk(i,257);

12 if (br(i,j)≤0)

13 br(i,j)=0;

14 else br(i,j)=1;

15 end

16 end

17 for k=2:255 % Looks to either side of a O to see if

there is a 1, if so change it to a one, if not leave it.

18 if br(i,k)==0
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19 if br(i,k−1)==1

20 if br(i,k+1)==1

21 br(i,k)=1;

22 else

23 end

24 else

25 end

26 else

27 end

28 end

29 for k=2:255 % Looks to either side of a O to see if

there is a 1, if so change it to a one, if not leave it.

30 if br(i,k)==1

31 if br(i,k−1)==0

32 if br(i,k+1)==0

33 br(i,k)=0;

34 else

35 end

36 else

37 end

38 else

39 end

40 end

41 end

1 function [prd,prdback,intspot,intspotback,temp0,temp1,pbegin,pend]=

product_back2(br,goodstrk,goodback)

2 %The purpose of "product" is to make a variable to hold

3 %The ouput values are:

4 %prd − Each row is from an individual streak represented in 'goodstrk

' and
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5 %it is multiplied by the value in the same row and column br, so the

6 %resuling row has column values with the baseline values of '0' and

peak

7 %values with the vales in 'goodsrk'.

8 %strkstat−the first column is the average intensity of each spot in a

9 %streak for the given row in 'intspot' and 'goodstrk', the second

column is

10 %the standard deviation, third column is the value for the spot with

the

11 %highest intensity and the fourth is of the spot with the lowest

intensity.

12 %intspot−is an array with the values of the individual spot values in

each

13 %column before they are sumed and stats are collected.

14

15 %goodstrk(:,256)=0; used before row 18−20 commented code was added.

16 prd = br .* goodstrk(:,(1:256));

17

18 for m=1:size(prd)

19 for s=1:256

20 if prd(m,s)<0

21 prd(m,s)=1;

22 else

23 end

24 end

25 end

26

27 %prd needs to remove any rements of a streak where column 1 had a

value to

28 %where a zero starts, and any remniant of a streak where column 256

is a

29 %number not a zero.

30 for g=1:size(prd) %removes values from a partial first streak
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31 g;

32 if prd(g,1)==0

33 h=2;

34 else

35 h=1;

36 f=1;

37 prd(g,f)=0;

38 while h==1

39 if prd(g,f+1)>0

40 prd(g,f+1)=0;

41 f=f+1;

42 f;

43 h=1;

44 else

45 h=0;

46 end

47 end

48 end

49 end

50

51 for g=1:size(prd) %removes values from a partial last streak

52 g;

53 if prd(g,256)==0

54 h=2;

55 else

56 h=1;

57 f=256;

58 prd(g,f)=0;

59 while h==1

60 if prd(g,f−1)>0

61 prd(g,f−1)=0;

62 f=f−1;

63 f;
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64 h=1;

65 else

66 h=0;

67 end

68 end

69 end

70 end

71

72

73 for j=1:size(prd,1)

74 for k=1:size(prd,2)

75 if prd(j,k)==0

76 prdback(j,k)=prd(j,k);

77 else

78 prdback(j,k)=goodback(j,k);

79 end

80 end

81 end

82

83 %"streaktest" finds is a second integration function written to find

the

84 %integrated intensity of a streak by summing the illumination event "

spot"

85 %for all pixel values contained in the region half the distance

between

86 %the peaks on either side of it. prd column 2 needs to be zero,

otherwise

87 %the first peak will not be recognized. This affects only streaks

where

88 %the first illumination event is only one pixel from the start, about

one

89 %out of every 100 frames.

90
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91 for i=1:size(prd)

92 prd(i,2)=0;

93 end

94

95 [temp0,temp1,pbegin,pend,intspot,intspotback] = streaktest (goodback,

goodstrk,prd);

96

97

98 end

1 function [outy,thold]=autobase5(iny)

2

3 % Purpose: to autosubtract baseline from a profile

4 % outy is the baseline−subtracted profile; sdbase is the standard

deviation

5 % of the errors from the baseline for regions outside of peaks. inx

and

6 % iny are the x and y values for the curve that you want to perform a

7 % baseline fit to. Order is either 1, 2 or 3 (higher is possible,

but

8 % probably not too wise) − it represents the type of baseline you

want to

9 % fit to. 1 would be a simple linear baseline; 2 would be a

quadratic; 3

10 % would be a cubic. Lower numbers are more conservative and less

likely to

11 % give weird output shapes; higher numbers make it possible to fit

curvier

12 % baselines. The output outy is the baseline corrected curve that

can be

13 % plotted against inx (which is why we don't provide an outx array).
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The

14 % function is based on an autocurvefitting routine developed by

Thermo

15 % Nicolet for the FTIR in our back laboratory − we got details from

them of

16 % that it functions, which were published in a paper by Maria Schiza

from

17 % our laboratory in a study of FTIR microscopy of bacterial spores.

We

18 % modified the original to make it work better for the purpose of

plankton

19 % streaks in the IMOC instrument. MLM (8/17/11)

20

21 %a 3rd order fit gives a better fit to IMOC SNR data (sdbase=115)

than

22 %1st(162.6)or 2nd(162.5) order and 4(109.7) gets a little better. So

use

23 %third order. JS (8/17/11)

24 inx = [1:256]; %removed inx and order from inputs of function and

set

25 order = 3; %there values here for framesort.m JS 8/19/11

26

27 if inx(1)==1;

28 [y,yi]=max(iny);

29 inx=inx−yi;

30 % we're centering the spectrum around zero to make low orders

easier to

31 % work with. This is only done if the input x array is a

sequence of

32 % numbers beginning with 1, i.e., not actual wavelengths for the

33 % spectrum. In that case, the output outy should be plotted

against

34 % the wavelengths if you want to see what the spectrum looks like
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− the

35 % inx array is just a bunch of numbers made up to make the job of

36 % fitting easier MLM

37 bot=min(iny);

38 iny2=iny;

39 inx2=inx;

40 for i=length(iny):−1:1

41 if iny(i)> (bot+((y−bot)*0.5))

42 iny2(i)=[];

43 inx2(i)=[];

44 % here we are eliminating all parts of the input curve

that are

45 % within 20% of the highest point. The baseline function

tries

46 % to fit the bottom of the curves, and keeping those

highest

47 % points will sometimes cause crazy results, so we just

get

48 % rid of them right off the bat MLM

49 end

50 end

51 end

52 outx=inx;

53 outy=iny;

54 %plot(inx,iny,'o');

55 %drawnow;

56 j=1;

57

58 while j6=0

59 j=j+1;

60 P = polyfit(inx2,iny2,order);

61 % here is where the curvefit is actually done, in an iterative

loop
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62 Y2 = polyval(P,inx2);

63 err=iny2−Y2;

64 abserr=abs(err);

65 % abserr is an array of absolute value of the errors between the

fit

66 % and the original curve

67 j;

68 if (max(err) > 2.2*mean(abserr))

69 % if the maximum error in the array of errors is

substantially

70 % larger than the average error, then we remove the point of

71 % maximum abs error from the arrays and repeat the curvefit,

which

72 % gradually looks more and more just at the bottom of the

curve.

73 % Note that err is the array of signed errors, abserr is

unsigned.

74 % Thus we don't pay attention to errors that are negative −

where

75 % the fit is well above the original data. Only where the

original

76 % data are substantially higher than the fit. MLM

77 ymax=max(abserr);

78 abserr=abserr/ymax;

79 for i=length(abserr):−1:1

80 % in this function, we're often doing negative indexing so

we

81 % can delete an element of the array without affecting our

82 % counting MLM

83 if abserr(i)==1

84 inx2(i)=[];

85 iny2(i)=[];

86 err(i)=[];
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87 i;

88 end

89 i;

90 end

91 %plot(inx2,err,'o');

92 %drawnow;

93 %pause(0.2)

94 else

95 % if the error conditions don't apply, we set j=0, which ends

the

96 % loop and we return. MLM

97 j=0;

98 end

99

100 end

101 % I don't recall why the stuff in green below was every here, or why

it was

102 % commented out. Obviously it is designed to count how long some

103 % particular action took MLM

104

105 %tic

106 %m=1;

107 %while m6=0

108 % y3=toc;

109 % if y3>0.3

110 % m=0;

111 % else

112 % m=m+1;

113 % end

114 % end

115 Y2=polyval(P,outx);

116 outy=outy−Y2;

117 %sdbase=std(err);
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118 thold=std(err)*3;

119 % above, we take the results of the curve fit and build a baseline

for all

120 % the x values, then subtract that baseline from the original data

and

121 % return it. Note that sdbase is the standard deviation of the

baseline

122 % error − it doesn't include the points that were removed from the

fit, so

123 % it really does mean something like "baseline error"f MLM

124

125 end %function autobase4

1

2 function [temp0,temp1,pbegin,pend,intspot,intspotback] = streaktest (

goodback,goodstrk,prd)

3 %If the first peak is only one column away from the edge, the peak

will

4 %not be counted.

5

6 for i=1:size(prd)

7 p=1;

8 a=1;

9 k=0;

10 m=0;

11 j=1;

12 q=1;

13 z=1;

14 %Look down the entire row, checking each column value to

determine

15 %where a streak starts in the prd array. Once a non−zero value
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is

16 %found, the column number of the first non−zero number is saved

in

17 %pbegin and the total number of columns before the start of the

peak is

18 %saved in the temp0 array.

19

20 %Each column in temp0, temp1, pend, and pbegin correlates to the

peak

21 %number in prd. For example, the value in column 1 in pbegin

22 %is the column number in prd where the first peak starts, column

1 in

23 %pend is the column number in prd where the first peak ends,

column 1

24 %in temp0 is the number of columns in prd before the first peak

starts

25 %and column 1 in temp1 is the number of columns in prd that make

up the

26 %first peak.

27 while z==1

28 while a==1

29 if j==256

30 a=0;

31 z=0;

32 elseif prd(i,j)==0

33 k=k+1;

34 j=j+1;

35 a=1;

36 else

37 pbegintemp(i,p)=j;

38 a=2;

39 temp0(i,p)=k;

40 k=0;

161



www.manaraa.com

41 p=p+1;

42 end

43 end

44 %After a peak is determined to have started, the row is

followed down

45 %each column until a zero is found again. Then the last

column of a

46 %zero is saved in pendtemp and the total number of columns in

the peak is

47 %saved in temp1.

48 while a==2

49 if prd(i,j)>0.001

50 m=m+1;

51 j=j+1;

52 a=2;

53 else

54 pendtemp(i,q)=j−1;

55 a=1;

56 temp1(i,q)=m;

57 m=0;

58 q=q+1;

59 a=1;

60 end

61 end

62 end

63 end

64 %Below looks at values in temp1 and if the peak is less than 3 pixels

wide,

65 %it is replaced with a zero and the value is stored in pbegintemp and

66 %pendtemp.

67 for i=1:size(temp1)

68 k=1;

69 for j=1:size(temp1,2)
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70 if temp1(i,j)<3

71 peaksize(i,k)=temp1(i,j);

72 pbegintemp(i,j)=0;

73 pendtemp(i,j)=0;

74 k=k+1;

75 else

76 k=k;

77 end

78 end

79 end

80

81 %Below looks at values in temp0 and if the gap between peaks is

larger than

82 %2 pixels, if it is, then the values in pbegintemp and pendtemp are

kept.

83 %If it is not, then the pend for that column and the pbegin are made

0,

84 %effectvily joining the two peeks. The next for loop removes the 0's

and

85 %creates temp2 arrays.

86 for i=1:size(temp0)

87 k=1;

88 for j=1:size(temp0,2)

89 if temp0(i,j)<3

90 pbegintemp(i,j)=0;

91 pendtemp(i,j)=0;

92 end

93 end

94 end

95

96 %Now we remove any 0's in temp arrays and store the non−zero values

in

97 %temp2 arrays.
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98

99 for i=1:size(pbegintemp)

100 k=1;

101 for j=1:size(pbegintemp,2)

102 if pbegintemp(i,j)>0

103 pbegintemp2(i,k)=pbegintemp(i,j);

104 pendtemp2(i,k)=pendtemp(i,j);

105 k=k+1;

106 else

107 k=k;

108 end

109 end

110 end

111

112

113

114 %The half way point between two peaks is found and tempt2 files are

115 %expanded in the begining and the end of a peak to include these

116 %values.

117 for i=1:size(pbegintemp2)

118 d=0;

119 for k=1:size(pbegintemp2,2) %counts how many non−zero values are

in a row

120 if pbegintemp2(i,k)>0

121 d=d+1;

122 end

123 end

124 a=(pbegintemp2(i,2)−pendtemp2(i,1)−1)*.5; %using distance from

first and second peak as reference for start of peak one

125 a=floor(a);

126 pbegin(i,1)=pbegintemp2(i,1)−a;

127 pend(i,1)=pendtemp2(i,1)+a;

128 if pbegin(i,1)<1
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129 pbegin(i,1)=1;

130 end

131 for j=2:d−1

132 a=(pbegintemp2(i,j)−pendtemp2(i,j−1)−1)*.5; %a is distance

from previous peak to current peak *0.5

133 a=floor(a);

134 b=(pbegintemp2(i,j+1)−pendtemp2(i,j)−1)*.5; %b is distance

from next peak to current peak *0.5

135 b=floor(b);

136 pbegin(i,j)=pbegintemp2(i,j)−a;

137 pend(i,j)=pendtemp2(i,j)+b;

138 end

139

140 a=(pbegintemp2(i,d)−pendtemp2(i,d−1)−1)*.5; %using distance from

last and

141 a=floor(a); %second to last peak

as reference for end of last peak

142 pbegin(i,d)=pbegintemp2(i,d)−a;

143 pend(i,d)=pendtemp2(i,d)+a;

144 if pend(i,d)>255

145 pend(i,d)=255;

146 end

147 end

148

149 %The new peak widths stored in pbegin and pend are used to find

150 %the integrated intesites for each peak.

151 for i=1:size(pbegin)

152 a=pbegin(i,1); %start of first peak

153 b=pend(i,1); %end of first streak

154 inttemp=[];

155 inttemp(1,:)=goodstrk(i,a:b);

156 inttempback=goodback(i,a:b);

157 intspot(i,1)=sum(inttemp);
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158 intspotback(i,1)=sum(inttempback);

159 clear inttemp;

160 clear inttempback;

161 d=0;

162 for k=1:size(pbegin,2) %counts how many non−zero values are in a

row

163 if pbegin(i,k)>0

164 d=d+1;

165 end

166 end

167 for j=2:d−1

168 a=pbegin(i,j);

169 b=pend(i,j);

170 inttemp=goodstrk(i,a:b);

171 intspot(i,j)=sum(inttemp);

172 inttempback=goodback(i,a:b);

173 intspotback(i,j)=sum(inttempback);

174 clear intemp;

175 clear intempback;

176 end

177 a=pbegin(i,d); %last streak

178 b=pend(i,d);

179 inttemp=goodstrk(i,a:b);

180 intspot(i,d)=sum(inttemp);

181 inttempback=goodback(i,a:b);

182 intspotback(i,d)=sum(inttempback);

183 clear intemp:

184 clear intempback;

185 end

186

187

188 end
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1

2 function [temp0,temp1,pbegin,pend,intspot,intspotback] = streaktest (

goodback,goodstrk,prd)

3 %If the first peak is only one column away from the edge, the peak

will

4 %not be counted.

5

6 for i=1:size(prd)

7 p=1;

8 a=1;

9 k=0;

10 m=0;

11 j=1;

12 q=1;

13 z=1;

14 %Look down the entire row, checking each column value to

determine

15 %where a streak starts in the prd array. Once a non−zero value

is

16 %found, the column number of the first non−zero number is saved

in

17 %pbegin and the total number of columns before the start of the

peak is

18 %saved in the temp0 array.

19

20 %Each column in temp0, temp1, pend, and pbegin correlates to the

peak

21 %number in prd. For example, the value in column 1 in pbegin

22 %is the column number in prd where the first peak starts, column

1 in

23 %pend is the column number in prd where the first peak ends,

column 1
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24 %in temp0 is the number of columns in prd before the first peak

starts

25 %and column 1 in temp1 is the number of columns in prd that make

up the

26 %first peak.

27 while z==1

28 while a==1

29 if j==256

30 a=0;

31 z=0;

32 elseif prd(i,j)==0

33 k=k+1;

34 j=j+1;

35 a=1;

36 else

37 pbegintemp(i,p)=j;

38 a=2;

39 temp0(i,p)=k;

40 k=0;

41 p=p+1;

42 end

43 end

44 %After a peak is determined to have started, the row is

followed down

45 %each column until a zero is found again. Then the last

column of a

46 %zero is saved in pendtemp and the total number of columns in

the peak is

47 %saved in temp1.

48 while a==2

49 if prd(i,j)>0.001

50 m=m+1;

51 j=j+1;
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52 a=2;

53 else

54 pendtemp(i,q)=j−1;

55 a=1;

56 temp1(i,q)=m;

57 m=0;

58 q=q+1;

59 a=1;

60 end

61 end

62 end

63 end

64 %Below looks at values in temp1 and if the peak is less than 3 pixels

wide,

65 %it is replaced with a zero and the value is stored in pbegintemp and

66 %pendtemp.

67 for i=1:size(temp1)

68 k=1;

69 for j=1:size(temp1,2)

70 if temp1(i,j)<3

71 peaksize(i,k)=temp1(i,j);

72 pbegintemp(i,j)=0;

73 pendtemp(i,j)=0;

74 k=k+1;

75 else

76 k=k;

77 end

78 end

79 end

80

81 %Below looks at values in temp0 and if the gap between peaks is

larger than

82 %2 pixels, if it is, then the values in pbegintemp and pendtemp are
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kept.

83 %If it is not, then the pend for that column and the pbegin are made

0,

84 %effectvily joining the two peeks. The next for loop removes the 0's

and

85 %creates temp2 arrays.

86 for i=1:size(temp0)

87 k=1;

88 for j=1:size(temp0,2)

89 if temp0(i,j)<3

90 pbegintemp(i,j)=0;

91 pendtemp(i,j)=0;

92 end

93 end

94 end

95

96 %Now we remove any 0's in temp arrays and store the non−zero values

in

97 %temp2 arrays.

98

99 for i=1:size(pbegintemp)

100 k=1;

101 for j=1:size(pbegintemp,2)

102 if pbegintemp(i,j)>0

103 pbegintemp2(i,k)=pbegintemp(i,j);

104 pendtemp2(i,k)=pendtemp(i,j);

105 k=k+1;

106 else

107 k=k;

108 end

109 end

110 end

111
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112

113

114 %The half way point between two peaks is found and tempt2 files are

115 %expanded in the begining and the end of a peak to include these

116 %values.

117 for i=1:size(pbegintemp2)

118 d=0;

119 for k=1:size(pbegintemp2,2) %counts how many non−zero values are

in a row

120 if pbegintemp2(i,k)>0

121 d=d+1;

122 end

123 end

124 a=(pbegintemp2(i,2)−pendtemp2(i,1)−1)*.5; %using distance from

first and second peak as reference for start of peak one

125 a=floor(a);

126 pbegin(i,1)=pbegintemp2(i,1)−a;

127 pend(i,1)=pendtemp2(i,1)+a;

128 if pbegin(i,1)<1

129 pbegin(i,1)=1;

130 end

131 for j=2:d−1

132 a=(pbegintemp2(i,j)−pendtemp2(i,j−1)−1)*.5; %a is distance

from previous peak to current peak *0.5

133 a=floor(a);

134 b=(pbegintemp2(i,j+1)−pendtemp2(i,j)−1)*.5; %b is distance

from next peak to current peak *0.5

135 b=floor(b);

136 pbegin(i,j)=pbegintemp2(i,j)−a;

137 pend(i,j)=pendtemp2(i,j)+b;

138 end

139

140 a=(pbegintemp2(i,d)−pendtemp2(i,d−1)−1)*.5; %using distance from
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last and

141 a=floor(a); %second to last peak

as reference for end of last peak

142 pbegin(i,d)=pbegintemp2(i,d)−a;

143 pend(i,d)=pendtemp2(i,d)+a;

144 if pend(i,d)>255

145 pend(i,d)=255;

146 end

147 end

148

149 %The new peak widths stored in pbegin and pend are used to find

150 %the integrated intesites for each peak.

151 for i=1:size(pbegin)

152 a=pbegin(i,1); %start of first peak

153 b=pend(i,1); %end of first streak

154 inttemp=[];

155 inttemp(1,:)=goodstrk(i,a:b);

156 inttempback=goodback(i,a:b);

157 intspot(i,1)=sum(inttemp);

158 intspotback(i,1)=sum(inttempback);

159 clear inttemp;

160 clear inttempback;

161 d=0;

162 for k=1:size(pbegin,2) %counts how many non−zero values are in a

row

163 if pbegin(i,k)>0

164 d=d+1;

165 end

166 end

167 for j=2:d−1

168 a=pbegin(i,j);

169 b=pend(i,j);

170 inttemp=goodstrk(i,a:b);
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171 intspot(i,j)=sum(inttemp);

172 inttempback=goodback(i,a:b);

173 intspotback(i,j)=sum(inttempback);

174 clear intemp;

175 clear intempback;

176 end

177 a=pbegin(i,d); %last streak

178 b=pend(i,d);

179 inttemp=goodstrk(i,a:b);

180 intspot(i,d)=sum(inttemp);

181 inttempback=goodback(i,a:b);

182 intspotback(i,d)=sum(inttempback);

183 clear intemp:

184 clear intempback;

185 end

186

187

188 end
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Appendix B

SIMOCv2.0 Matlab Code

1 function [filtelec,deb_track,strk_hightbound,strk_widthbound,wid_x,

deb_x,int_x,initial_wid_x,initial_width,final_width,x,

initial_strk_hightbound,initial_strk_widthbound,varargout]=

plankton_field_deblur(wn,varargin)

2 % Purpose: This function compiles all phytoplankton debluring

analysis functions to

3 % calculate the integrated intensity and size of each filter element.

4 %

5 %order of varargin=(normarray,bkg); varargout=[bkg,normarray]

6 %plankton_field_5 is used for phytoplankton.

7 %The use of varagin allows the user to determine if a new bkg and/or

8 %normarray are required for the data he/she wishes to correct.

9

10 %Inputs:

11 %

12 % wn−The total number of filter wheel positions in the filter wheel.

i.e,

13 % the 7 position filter wheel with 6 filters and a blacked out blank

14 % position, wn=6.

15 %

16 % varargin− This is used to call in the number of

17 % variables required, which can change depending on the new flat

field or new background.

18 % If a new ff and bkg are needed, then varargin = [].
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19 % If a ff and/or bkg exist for a data set,

20 % then "normarray" and "bkg" will be in the workspace and will need

to be

21 % added in the order specified in line 2.

22

23 %Outputs:

24 %

25 %filtelec = cell array with track boundries.

26 % deb_track = a cell array with the image for each deblured track.

27 % strk_hightbound = a cell array with the row boundries of each

streak.

28 % strk_widthbound = a cell array with the column boundries of each

streak

29 % wid_x = a cell array with the final deblured widths in pixes of

each

30 % streak.

31 % deb_x = a cell array with the entire image deblured.

32 % int_x = the integrated values of each streak in a track

33 % initial_wid_x =a cell array with the starting widths in pixes of

each

34 % streak.

35 % initial_width = array with starting streak widths.

36 % final_width = array with final streak widths.

37 % x = cell array with corrected images.

38 % initial_strk_hightbound = pre−deblured row boundries of each

streak.

39 % initial_strk_widthbound = pre−deblured column boundries of each

streak.

40 % varargout = depending on inpute values, varargout holds the

background

41 % variable and flat field variables for correcting the raw images.

42

43
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44

45 if nargin==1

46 [normarray,bkg,datap,data]=plankread();

47 elseif nargin==2

48 [datap,data,bkg]=plankread3(varargin{1}); %varargin{1}=normarray;

49 elseif nargin==3

50 [datap,data]=plankread2(varargin{1},varargin{2}); %1=normarray, 2=

bkg

51 end

52

53

54 [r,p,x,y,th1]=planka_deblur(datap);

55 disp('a complete')

56

57 [filtelec]=plankb2(p,y,th1,x,r);

58 disp('b complete')

59

60 [ deb_track,strk_hightbound,strk_widthbound,wid_x,deb_x,int_x,

initial_wid_x ] = plank_deblur6(wn,int,filtelec,x);

61 disp('deblur complete')

62

63

64 final_width=cell2mat(wid_x);

65 final_width= final_width';

66 final_avg_wid= mean(final_width(:,1));

67 final_std_wid=std(final_width(:,1));

68

69 initial_width=cell2mat(initial_wid_x);

70 initial_width= initial_width';

71 initial_avg_wid= mean(initial_width(:,1));

72 initial_std_wid=std(initial_width(:,1));

73

74
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75 nout = max(nargout,1)−13;

76 if nout==1

77 varargout{1}=bkg;

78 elseif nout==2

79 varargout{1}=bkg;

80 varargout{2}=normarray;

81 else

82 varargout=[];

83 end

84

85 end %function plankton_field

1 function [normarray,bkg,datap,data]=plankread()

2 %need normarray, bkg and datap.

3 % Purpose: This function will read in .spe files that you have chosen

from a

4 % browser menu and perform all preprocessing.

5

6 %Choose dark, bkg and flat field data to create a corrected flat

field

7 %array.

8

9 [normarray,m]=normdat5;

10

11 % Upload a single bkg file that will be subtracted from the data

file. The

12 % bkg file will be divided into 256x256 images that will be averaged

(bkg) then

13 % dark count will be removed. This bkg−dark array, bd, will be

sutracted

14 % from the average data array.
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15

16 [filename,pathname] = uigetfile('*.*','Select the Background File for

Data Analysis','MultiSelect','on');

17 fullname = strcat(pathname,filename);

18 fid=fopen(fullname);

19 fseek(fid,4100,'bof');

20 A=fread(fid,256*inf,'uint16');

21 [r c]=size(A);

22 count=r/(256^2);

23

24

25 bkg=reshape(A,256,256,count);

26 bkg=mean(bkg,3);

27

28

29 % bd=bkg;

30 % bd=bkg−dark; The bkg image already contains the dark noise, so no

need to

31 % subtract it out of the bkg image. when subtracting background from

sample image, the dark

32 % noise will also be subtracted.

33

34 % Upload a single data file and determine how many images are in the

file,

35 % count. Reshape the data into a 3D array whose size is 256 x 256 x

count.

36 %fclose(fid);

37 [filename,pathname] = uigetfile('*.*','Select the Data File for

Analysis','MultiSelect','on');

38 fullname = strcat(pathname,filename);

39 fid=fopen(fullname);

40 fseek(fid,4100,'bof');

41 A=fread(fid,256*inf,'uint16');
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42 [r c]=size(A);

43 count=r/(256^2);

44

45 data=reshape(A,256,256,count);

46

47

48 % Preprocessing the data: subtract bd, divide by normarray

49 % (corrected flat field), multiply by m (average flat field pixel

50 % intensity).

51 [r,c,p]=size(data);

52 for i=1:p

53 datap(:,:,i)=(((data(:,:,i)−bkg))./normarray);

54 end

55

56 end

1 function [datap,data]=plankread2(normarray,bkg)

2 %Already calculated normarray and bkg, need new datap

3 % Purpose: This function will read in .spe files that you choose from

a

4 % browser menu and perform a background fluorescence subraction and a

5 % flatfield normalization correction. The difference between

plankread and

6 % plankread2 is that plankread asks to read in a the files necissary

to

7 % generate the 'dark', normlized flatfield 'normarray', and the

background

8 % 'back', but plankread2 assumes that these files are already

generated and

9 % can be applied to another set of data. If different correction

files are
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10 % needed, then plankread or plankread3 need to be used.

11

12 % JS (8−12−11)

13

14

15 [filename,pathname] = uigetfile('*.*','Select the Data File for

Analysis','MultiSelect','on');

16 fullname = strcat(pathname,filename);

17 fid=fopen(fullname);

18 fseek(fid,4100,'bof');

19 A=fread(fid,256*inf,'uint16');

20 [r c]=size(A);

21 count=r/(256^2);

22

23 for i=1:count

24 data=reshape(A,256,256,count);

25 end

26

27 % Preprocessing the data: subtract dark, subtract bd, divide by

normarray

28 % (corrected flat field), multiply by m (average flat field pixel

29 % intensity).

30 [r,c,p]=size(data);

31 for i=1:p

32 datap(:,:,i)=(((data(:,:,i)−bkg))./normarray);

33 end

34

35

36 end

1 function [datap,data,bkg]=plankread3(normarray)
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2 %Already calculated normarray, need new bkg and datap

3 % Purpose: This function will read in .spe files that you choose from

a

4 % browser menu and perform a background fluorescence subraction and a

5 % flatfield normalization correction. The difference between

plankread and

6 % plankread2 is that plankread asks to read in a the files necissary

to

7 % generate the 'dark', normlized flatfield 'normarray', and the

background

8 % 'back', but plankread2 assumes that these files are already

generated and

9 % can be applied to another set of data. If different correction

files are

10 % needed, then plankread or plankread3 need to be used.

11

12 % JS (8−12−11)

13

14 [filename,pathname] = uigetfile('*.*','Select the Background File for

Data Analysis','MultiSelect','on');

15 fullname = strcat(pathname,filename);

16 fid=fopen(fullname);

17 fseek(fid,4100,'bof');

18 A=fread(fid,256*inf,'uint16');

19 [r c]=size(A);

20 count=r/(256^2);

21 bkg=reshape(A,256,256,count);

22 bkg=mean(bkg,3);

23

24

25 [filename,pathname] = uigetfile('*.*','Select the Data File for

Analysis','MultiSelect','on');

26 fullname = strcat(pathname,filename);
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27 fid=fopen(fullname);

28 fseek(fid,4100,'bof');

29 A=fread(fid,256*inf,'uint16');

30 [r c]=size(A);

31 count=r/(256^2);

32

33 for i=1:count

34 data=reshape(A,256,256,count);

35 end

36

37 % Preprocessing the data: subtract dark, subtract bd, divide by

normarray

38 % (corrected flat field), multiply by m (average flat field pixel

39 % intensity).

40 [r,c,p]=size(data);

41 for i=1:p

42 datap(:,:,i)=(((data(:,:,i)−bkg))./normarray);

43 end

44

45

46 end

1 function [r,p,x,y,th1]=planka_deblur(datap)

2

3 % Purpose: Find the average & std. dev of the columns of an image.

4 % Baseline correct the std dev using autobase2. Calculate a

threshold from

5 % the baseline corrected std dev using a histogram to determine the

average

6 % baseline value. This average baseline value is used to determine

the
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7 % threshold value for selecting a track in an image.

8

9 % For use in plankton_field.m

10

11 %autobase_track is an adaptation of the autobase function Dr. Myrick

and

12 %Puala used to baseline correct IR spectra. I modified it so that

the

13 %outputs are y(3,:), the baseline corrected spectrum, and sdbase, is

the sd of the baseline are the

14 %same. But, the th1 variable is modified from the original in that

after the

15 %intensities within 50% of the maximum value are removed, the max

value and

16 %min value of the corrected baseline are used to approximate the

noise of

17 %the baseline. The threshold of a track is then equal the 2x the

noise of

18 %the baseline. JS (4−9−12)

19

20 [r,c,p]=size(datap);

21

22 for i=1:p

23 x{i}=datap(:,:,i)';

24 x_gray{i}=mat2gray(x{i});

25 x_adj{i}=imadjust(x_gray{i});

26 y{i}(1,:)=mean(x_adj{i});

27 y{i}(2,:)=std(x_adj{i});

28 inx{i}(1,:)=1:r;

29 [y{i}(3,:),sdbase,th1(i)]=autobase_track(inx{i},y{i}(2,:),2);

30 % [y{i}(3,:)]=autobase2(inx{i},y{i}(2,:),2);

31 % rat{i}=y{i}(3,:)./y{i}(1,:);

32 % mins(i)=min(y{i}(2,:));

183



www.manaraa.com

33 % [freq1{i},xout1{i}]=hist(y{i}(3,:),r);

34 % [vfq1(i),rfq1(i)]=max(freq1{i});

35 % th1(i)=(xout1{i}(rfq1(i)+1)−xout1{i}(rfq1(i)))*3;

36 end

37

38 end %function

1 function [filtelec]=plankb2(p,y,th1,x,r)

2

3 % Purpose: Compare the baseline corrected std dev to the threshold

value.

4 % Score the pixel with a 0 for below th1 and 1 for above th1. Look 10

5 % pixels in from each image edge to find the beginning (left edge)

and end

6 % (right edge) of an illumination event (phytoplankton streak). The

7 % boundaries are written to filtelec with the beginning in column 1

and the

8 % end in column 2.

9 % p = size of image set (often 500)

10 % y = cell array, each cell containing a 3Xr array; row 1 = mean(

image);

11 % row 2 = std(image); row 3 = baseline subt'd std(image)

12 % th1d = threshold of baseline corrected standard deviations

13 % x = cell array of raw frames

14 % r = number of rows in each image (e.g., 256)

15 %

16 % filtelec is a cell array, each cell either being empty if nothing

is

17 % above threshold. Otherwise it contains a jX2 array, where j is the

18 % number of tracks detected, and column 1 contains start row index,

column
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19 % 2 contains end row index

20

21 % For use in plankton_field.m

22

23 filtelec=cell(1,p);

24 b=cell(1,p);

25 for i=1:p

26 b{i}=(sign(y{i}(3,:)−th1(i))+1)/2;

27 j=0;

28 for k=2:r−1

29 b{i}(k)=sum(b{i}(k−1:k+1))/3;

30 end

31 for k=1:r

32 b{i}(k)=(sign(b{i}(k)−0.8)+1)/2;

33 end

34 % t(i)=sum(b{i});

35 % if (t(i)<3) || (t(i)>75)

36 % x{i}=[];

37 % end

38 if (isempty(x{i}))

39 filtelec{i}=[];

40 elseif (isnumeric(x{i}))

41 for k=10:r−10

42 if (b{i}(k) == 0) && (b{i}(k+1) == 1)

43 j=j+1;

44 filtelec{i}(j,1:2)=0;

45 filtelec{i}(j,1)=k;

46 %filtelec{i}(j,2)=k+1;

47 end

48 if (b{i}(k) == 1) && (b{i}(k+1) == 0) && (j>0)

49 filtelec{i}(j,2)=k+1;

50 end

51 if (b{i}(:) == 0)
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52 filtelec{i}=[];

53 end

54 %i

55 %filtelec{i}

56 end

57 end

58 %i

59 %filtelec{i}

60 end

61

62 end %function plankb

1 function [ deb_track,strk_hightbound,strk_widthbound,wid_x,deb_x,

int_x,initial_wid_x ] = plank_deblur5( x,filtelec,F,E)

2 % Version 1.3.0

3 %UNTITLED2 Summary of this function goes here

4 % The purpose of plank_deblure2 is to deblure all "tracks" in x.

Each

5 % image in x will go through the debluring minimization for every "

track"

6 % defined in filtelec. This is done by a for loop from 1 to 50,

7 % adjusting the disk psf diameter by 0.2, and finding the diameter

value

8 % that gives the largest max column vector value.

9

10 %deb_x is a cell array with each cell containing a cell array. The

cell

11 %array in each cell of deb_x is a deblured track. There are as many

cells

12 %in each cell of deb_x as there are tracks in each image of x.

13
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14 % x: cell array containing the "blurry" images.

15 % filtelec: cell array containing the column boundries of each

track

16 % containined in x.

17 % F: fraction of a disk diameter that is increased for each

iteration.

18 % E: Largest disk diameter to use.

19 compstart=tic;

20 a=size(x,2);

21 deb_track=cell(1,a);

22 strk_hightbound=cell(1,a);

23 strk_widthbound=cell(1,a);

24 initial_wid_x=cell(1,a);

25 wid_x=cell(1,a);

26 deb_x=cell(1,a);

27 int_x=cell(1,a);

28 %strk_int_x=cell(1,a);

29 for i=1:size(x,2)

30 i

31 if isempty(filtelec{i})==0

32 b=size(filtelec{i},1); %Make sure to change this once it is

working!!!

33 tstart=tic;

34 for j=1:b

35 jj=1;

36 j;

37 % Increase the size of filtelec by 2 rows on both sides.

This

38 % is needed to allow 'edge' to have enough pixels on the

sides

39 % of the streaks.

40 filtwid=ceil(abs(filtelec{i}(j,2)−filtelec{i}(j,1))*0.25)

;
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41 if filtelec{i}(j,1)>1

42 filtelec{i}(j,1)=filtelec{i}(j,1)−filtwid;

43 end

44 if filtelec{i}(j,2)<size(x{i},2)−1

45 filtelec{i}(j,2)=filtelec{i}(j,2)+filtwid;

46 end

47 if filtelec{i}(j,1)<1

48 filtelec{i}(j,1)=1;

49 end

50 if filtelec{i}(j,2)>256

51 filtelec{i}(j,2)=256;

52 end

53 % Test to determine if the track is more than 2 pixels

wide

54 % before debluring. If the track is less than 3 pixels

wide,

55 % the debluring step will not work properly.

56 % BWo=edge(x{i}(:,filtelec{i}(j,1):filtelec{i}(j,2))

,'prewitt',[],'both');

57

58 %convert the image from "double" to grayscale for the

purpose

59 %of streak perimeter detection using 'edge' and 'imadjust

'.

60 track=x{i}(:,filtelec{i}(j,1):filtelec{i}(j,2));

61

62 % The perimeter of the streaks in the track are found and

63 % stored in DBWo_filt, expressed as 1's surrounded by the

64 % background which is expressed as 0's.

65 [ DBWo_filt ] = plank_edge3( track );

66

67 % The average width of the streaks in the track are

output at
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68 % streako_width. temp_strk_widthbound and

temp_strk_hightbound

69 % contain the row and column boundries of the streaks as

well

70 % as their lenght and widths.

71 [ streako_width,temp_strko_widthbound,

temp_strko_hightbound ] = streak_dimensions (

DBWo_filt );

72

73 % if the width of the track is less than 3, then the

debluring

74 % algorithms do not work.

75 if streako_width>2

76 jj=1;

77 else

78 jj=2;

79 end

80

81 % If the average width of the streaks in the track are

less

82 % than 3 pixels, then the deblur_iteration function is

called.

83 if jj==1

84 tstart=tic;

85 [ test_deb_optval ] = deblur_iteration( streako_width

,filtelec{i},x{i},j,F,E );

86 deblur_iteration_time=toc(tstart)

87 [opt_val,opt_d]=min(test_deb_optval,[],1);

88 diameter=test_deb_optval(opt_d(1,1),2);

89

90 psf=fspecial('disk',diameter);

91 % [tempdeb,fpsf]=deconvblind(x{i},psf)

; %deconvblind may be
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92 % used to implement the psf found in

deblur_iteration as a

93 % starting value and then runs it's

own iteration

94 % internally. But there is no check

to determin if this is

95 % a resonable psf like there is in the

deblur_iteration

96 % function.

97

98 tempdeb=deconvlucy(x{i},psf);

99 deb_track{i}{j}=tempdeb(:,filtelec{i}(j,1):filtelec{i

}(j,2));

100 deb_x{i}{j}=tempdeb;

101 tempdeb2=deb_track{i}{j};

102

103 % The perimeter of the deblured streaks in the track

are found and

104 % stored in DBWf_filt, expressed as 1's surrounded by

the

105 % background which is expressed as 0's.

106 [ DBWf_filt ] = plank_edge3( tempdeb2 );

107 imshow(DBWf_filt);

108 pause(0.5);

109 % The average width of the streaks in the track are

output at

110 % streako_width. temp_strk_widthboundf and

temp_strk_hightboundf

111 % contain the row and column boundries of the streaks

as well

112 % as their lengths and widths.

113 [ streakf_width,temp_strk_widthboundf,

temp_strk_hightboundf ] = streak_dimensions (
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DBWf_filt );

114

115

116 % strk_mask is a mask where only the area of the

image where

117 % a streak is located has an intensity value and all

other

118 % elements are 0.

119 strk_mask=DBWf_filt.*track;

120

121 % Finds the blank gaps in the track where the blocked

out

122 % filter element is located and integrates the

streaks.

123 % The order of the rows in int is the order of the

streaks

124 % as they appear in the image from row 1 to 256, or

125 % inverted in datap from column 1 to column 256.

126 [ int ] = integrate_streaks( temp_strk_hightboundf,

strk_mask,DBWf_filt );

127

128 %g;

129 int_x{i}{j}=int;

130 wid_x{i}(1,j)=streakf_width;

131 wid_x{i}(2,j)=i;

132 initial_wid_x{i}(1,j)=streako_width;

133 initial_wid_x{i}(2,j)=i;

134 strk_hightbound{i}{j}=temp_strk_hightboundf;

135 strk_widthbound{i}{j}=temp_strk_widthboundf;

136 else

137 wid_x{i}{j}=streako_width;

138 end

139 end
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140 time=toc(tstart);

141 end

142 end

143 complete=toc(compstart)

144 end

1 function [ DBW_filt ] = plank_edge3( track )

2 %Version 1.3 used for beads

3 % The input aray, track, contains a set of streaks in a track. The

track

4 % is defined by the filtelec. Here, the streaks are enhanced and

their

5 % exact location within the track array are found. Their location

is

6 % stored in DBWo_filt and marked by a 1, where the background area

is

7 % marked by a 0. v1.3 uses the region found by edge and then

8 % interpolates the region and determines width by selecting the

edges of

9 % the summed row vector profile.

10

11 gray_track=mat2gray(track);

12 %imresize interpolates the image by 10 pixels. This allows the image

to

13 %expand by 10 times. Later it is contracted by using the same

imadjust

14 %function, but with 0.1, to bring the image back to its original

size.

15

16 % gray_track_interp=imresize(gray_track,2,'box');

17 %nearest, bilinear, bicubic, box, lancozos2, lancozos3
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18

19 %imadjust increases the contrast between streaks and the bkg.

20 gray_track_con=imadjust(gray_track);

21

22 %edge outputs a logical array of 1's and 0's, where 1's

23 %represent an element in the array where the derivative along

24 %one dimension specifies the edge of an object. BWo is the

25 %trace of the original image.

26 BW=edge(gray_track_con,'canny'); %sobel, prewitt, roberts, log,

zerocross, canny

27 % DBWo is converted from logical to double.

28 DBW=double(BW);

29

30 % perimeter_draw is a function that fills in the perimeter of

31 % an object from the input where the gap in the perimeter is

32 % less than 3 elements.

33 [ DBW_perim ] = perimeter_draw( DBW );

34 % imfill fills in the interior of an object drawn from

35 % perimeter_draw.

36 DBW_fill=imfill(DBW_perim,'holes');

37 % object_locate separates the streaks from noise objects

38 % detected in edge.

39 [ DBW_filt ] = object_locate( DBW_fill );

40 % imshow(DBW_filt);

41 % pause(0.2);

42 % figure:imshow(gray_track_con);title('nearest−gray track con');

43 % figure:imshow(gray_track_interp);title('nearest−gray track interp')

;

44 % figure:imshow(BW);title('nearest−sobel−BW');

45 % figure:imshow(DBW_fill);title('bicubic−sobel−DBWfill');

46 end
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1 function [test_deb_optval] = deblur_iteration2(filtelec,x,j)

2 %deblur_iteration: This function is used in plank_deblur6. It finds

the

3 %optimum disk radius used for debluring an image of a phytoplankton

track.

4

5 % Inputs−

6 % F: fraction of a disk diameter that is increased for each

iteration.

7 % E: Largest disk diameter to use.

8 % strk_widthboundo: the width of the track in an image before any

9 % deblur processing is performed.

10 % filtelec: predifined edges of the track found in plank a & b.

11 % x: 256x256 array of original image

12 % j: track number in filtelec. This is retrieved from

plank_deblur3.

13 % strk_lengthboundt: the section of the image that is used to

determine

14 % the "orginal" streak length in plank_deblure3. This number

is used

15 % only if the debluring step finds the streak width to be less

than 2

16 % pixels. Usually, this occurs becuause the streak is "

deblured" into

17 % nothing and only one or two pixels are left.

18

19 % Outputs−

20 % test_deb_optval: Is an array where each row is the result of one

step

21 % in the for loop. Column 1 contains the width of the deblured

streak.

22 % Column 2 contains the diameter of the psf used in 'deconvlucy
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' to

23 % deblur the image.

24 E=2;

25 F=10;

26 test_deb_optval(1:(E−F),1:2)=zeros;

27 EE=E*F;

28 Fd=F−1;

29 for d =F:EE

30 dd=d/F; %disk psf diameter is dd

31

32 % debluring function for the entire image i

33 psf=fspecial('disk',dd);

34 tempdeb=deconvlucy(x,psf);

35

36 % put row boundries in for either a single streak or all

37 % streaks in a track, if this is know.

38 test_deb2=tempdeb(:,filtelec(j,1):filtelec(j,2));

39

40 % pcolor(tempdeb(:,40:75));shading interp

41 % pause(0.5);

42 % d;

43

44 [r,p,x_t,y,th1]=planka_3(test_deb2);

45

46 [ streakt_width,temp_strk_widthbound,temp_strk_hightbound ] =

streak_dimensions (DBWt_filt );

47

48 if streakt_width<2

49 streakt_width=strk_width;

50 end

51

52 test_deb_optval(d−Fd,1)=streakt_width;

53 test_deb_optval(d−Fd,2)=dd;
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54

55 end

56

57 end

1 function [ streak_width,temp_strk_widthbound,temp_strk_hightbound ] =

streak_dimensions2 (DBW_filt,track )

2 %UNTITLED6 Summary of this function goes here

3 % Detailed explanation goes here

4

5 % The row dimension of DBWo_filt is summed so that the

each

6 % continouse row that contains a number defines the

length of

7 % the streak.

8 strk_bound=sum(DBW_filt,2);

9

10 % temp_strk_hightbound is a variable that contains the

hight or

11 % length of a streak. Rows represent the streak number

in the

12 % track, column 1 is the start of the streak, 2 is the

end and

13 % 3 is the length.

14 [ temp_strk_hightbound ] = streak_height_boundries(

strk_bound );

15

16 % temp_strk_widthbound is a variable tghat contains the

width

17 % of a streak. Rows represent the streak number in the

18 % track, column 1 is the start of the streak, 2 is the
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end and

19 % 3 is the width.

20 [ temp_strk_widthbound] = strk_width_boundries2(

temp_strk_hightbound,DBW_filt,track );

21

22 streak_width=mean(temp_strk_widthbound(:,3));

23 end

1 function [ int,tot_int ] = integrate_streaks2( strk_heightbound,track

,track_outline,strk_widthbound,wn,strk_area )

2 %UNTITLED7 Summary of this function goes here

3 % This function uses the inputs from strk_dimensions and plank_edge

and

4 % sums the pixel values found in each streak in a track.

5

6 %Inputs:

7 % wn=number of MOE positions in the filter wheel. example: 7

position

8 % filter wheel will have wn=6.

9 % temp_strk_heightbound = each row is a streak in a track, col 1 is

10 % beginning row value and col 2 is ending row value.

11 % strk_mask = track area image containing only the pixel values for

each streak in a

12 % track.

13 % DBWf_filt = logical array of track image where 1's are pixels in

the

14 % image containing a streak and 0's are pixels containing background.

15

16 %Outputs:

17 % int = array with integrated streak values and ordered from 1:end in

18 % increasing row values from the "blank" streak in the track.
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19 % tot_int = cell array the same size as int where each cell is

another cell array.

20 %The firt row of the inner cell array contains the integrated

intensity

21 %for each streak in the track and it's filter wheel posistion.

The

22 %second and third rows in the inner cell are the image and track

23 %numbers.

24 wn=wn+1;

25 int=cell(1,size(track,2));

26 tot_int=cell(1,size(track,2));

27 for i=1:size(track,2)

28 for j=1:size(track{1,i},2)

29 gs=size(strk_heightbound{i}{j},1);

30 gap=zeros(gs+1,1); %make an array with the number of streaks

plus 1.

31 % The for−loop fills in "gap" with each row representing

the distance between streaks in the track.

32 % the first number will be between row 1 (begining of

image) to the first streak.

33 for g=1:gs+1

34 if g==1

35 gap(g,1)=strk_heightbound{i}{j}(g,1);

36 elseif g==size(strk_heightbound{i}{j},1)+1

37 gap(g,1)=size(track,1)−strk_heightbound{i}{j}(g

−1,2);

38 else

39 gap(g,1)=abs(strk_heightbound{i}{j}(g−1,2)−

strk_heightbound{i}{j}(g,1));

40 end

41 end

42 %Below the average length of a streak in the track is

found.
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43 %From this average length, a gap threshold is found.

44 %This is used for determining where a "blank" is located

in the

45 %track, variable 'sg_blank'.

46 streak_gap=gap(1:gs,:);

47 sg_blank=ceil((mean(strk_heightbound{i}{j}(:,3)))*1.5);

48 k=1;

49 temp_int=zeros(gs,1);

50 %Below populated the "integrated" intensities held in

column 2

51 %of temp_int. If the length of the gap between streaks

is

52 %greater than the previously determined thershold, then a

0 is

53 %used in col 2 to identify it as the blank position.

This

54 %blank will later be used to order the streaks.

55 %streak_outline=track{i}{j}.*track_outline{i}{j};

56 for q=1:gs

57 if q==1

58 temp_int(k,1)=sum(sum(track{i}{j}(

strk_heightbound{i}{j}(q,1):strk_heightbound{

i}{j}(q,2),strk_widthbound{i}{j}(q,1):

strk_widthbound{i}{j}(q,2))),2);

59 temp_int(k,4)=strk_area{1,i}{1,j}(1,q);

60 %temp_int(k,1)=sum(sum(streak_outline(

strk_heightbound{i}{j}(q,1):strk_heightbound{

i}{j}(q,2),:)));

61 k=k+1;

62 elseif streak_gap(q,1)< sg_blank

63 temp_int(k,1)=sum(sum(track{i}{j}(

strk_heightbound{i}{j}(q,1):strk_heightbound{

i}{j}(q,2),strk_widthbound{i}{j}(q,1):
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strk_widthbound{i}{j}(q,2))),2);

64 temp_int(k,4)=strk_area{1,i}{1,j}(1,q);

65 %temp_int(k,1)=sum(sum(streak_outline(

strk_heightbound{i}{j}(q,1):strk_heightbound{

i}{j}(q,2),:)));

66 k=k+1;

67 else

68 temp_int(k,1)=0;

69 k=k+1;

70 temp_int(k,1)=sum(sum(track{i}{j}(

strk_heightbound{i}{j}(q,1):strk_heightbound{

i}{j}(q,2),strk_widthbound{i}{j}(q,1):

strk_widthbound{i}{j}(q,2))),2);

71 temp_int(k,4)=strk_area{1,i}{1,j}(1,q);

72 %temp_int(k,1)=sum(sum(streak_outline(

strk_heightbound{i}{j}(q,1):strk_heightbound{

i}{j}(q,2),:)));

73 k=k+1;

74 end

75 end

76

77 %The third column in temp_int with have a 101 used to

identify

78 %the blank spot, 201 is placed in all other cells in col

3.

79 temp_int(:,3)=201;

80 temp_int(:,2)=(1:1:size(temp_int,1));

81 gs=size(temp_int,1);

82 % Look to see if there is a 0 in column 2 and change the

row to

83 % 101 from 201, indicating it is a blank.

84 %pq is used to make sure only the first blank is labled

101.
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85 %If there are multiple blank spots with 101, the for loop

at 79

86 %renumbers all streaks below the second blank spot.

87 pq=1;

88 for q=1:gs

89 if temp_int(q,1)==0 && pq==1

90 temp_int(q,3)=101;

91 pq=2;

92 end

93 end

94 l=1;

95 for q=1:gs

96 % we only want to identify the first blank spot.

97 if temp_int(q,3)==101

98 temp_int(q,2)=0;

99 for m=q−1:−1:1

100 temp_int(m,2)=wn−l; %ordering the streaks

from p:1 in decending order of row pixel

values. example: p=7, row 1 in

height_bound

101 l=l+1; %corresponds to the streak from

row pixels 6:35 and so on. If the blank

is after say the 3 streak in the image,

then streak

102 end %2 is labeled filter 6 and

streak 1 is labled filter 5 and streak 3 is

labeled streak 1 and so on.

103 l=1;

104 for m=q+1:size(temp_int)

105 temp_int(m,2)=l;

106 l=l+1;

107 if l==wn+1 %This if statment and

for loop are for when a scond blank spot
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is found in the track. The ordering

108 temp_int(m,2)=0;

109 l=1;

110 % for n=m+1:size(temp_int)

111 % temp_int(n,2)=c;

112 % c=c+1;

113 % end

114 end

115 end

116 end

117 end

118 temp_int(:,3)=[];

119 % reorder int so that zero is first and the order goes

from 1:p.

120 temp_int2=zeros(wn−1,2);

121 temp_avg=zeros(1,1);

122 for jj=1:wn−1 %jj is filt position

123 kj=1; %kj is the number of filt positions found

124 for ii=1:size(temp_int,1) %ii is the row number of

temp_int

125 if temp_int(ii,2)==jj

126 temp_avg(kj,1)=temp_int(ii,1);

127 kj=kj+1;

128 end

129 end

130 temp_int2(jj,1)=jj;

131 temp_int2(jj,2)=mean(temp_avg);

132 temp_avg=zeros(1,1);

133 end

134 int{1,i}(1:wn−1,j)=temp_int2(:,2);

135 int{1,i}(wn,j)=i;

136 int{1,i}(wn+1,j)=j;

137 tot_int{1,i}{1,j}(:,1)=temp_int(:,1); % integrated
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intensity

138 tot_int{1,i}{1,j}(:,2)=temp_int(:,2); % MOE number in

filter wheel

139 tot_int{1,i}{1,j}(:,3)=temp_int(:,3); % area of the

streak in pixels

140 for mm=1:size(temp_int)

141 tot_int{1,i}{1,j}(mm,4)=sqrt((86^2.*temp_int(mm,3))

+(45.2.*temp_int(mm,1))); % stdev in the streak

due to background fluorescence.

142 tot_int{1,i}{1,j}(mm,5)=temp_int(mm,1)/tot_int{1,i

}{1,j}(mm,4); % upper limit on SNR due to

background fluorescence

143 end

144 tot_int{1,i}{2,j}=i;

145 tot_int{1,i}{3,j}=j;

146 end

147 end

148 end

1 function [strk_hightbound] = streak_height_boundries( strk_bound )

2 % Find the row boundries of each streak in a track and remove any

streaks

3 % that are less than the average streak length.

4

5 p=1; % keeps track of what peak number is being counted

6 a=1; % is used to switch between looking for start and end of a

streak

7 k=0; % keeps count of number of rows between streaks

8 m=0; % keeps count of number of rows in a streak

9 j=1; % keeps track of what row is being investigated

10 q=1; % keeps track of what row in pend was filled last
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11 z=1; % remains 1 until the last row is investigated

12

13 %Look down the entire column, checking each row value to determine

14 %where a streak starts in the strk_bound array. Once a non−zero

value is

15 %found, the row number of the first non−zero number is saved in

16 %pbegintemp and the total number of rows before the start of the peak

is

17 %saved in the temp0 array.

18

19 % If the first streak in an image is a partial streak, then it causes

20 % problems in strk_width_boundries function becuase the width of a

partial

21 % streak is found and can be inconsistant with the widths of full

streaks.

22

23 % looks at the first row to see if there is a partial streak. If

there is

24 % a partial streak, it removes it by changing all consecutive 1's to

0's.

25

26 if strk_bound(1,1)==1 || strk_bound(2,1)==1

27 strk_bound(1,1)=0;

28 jj=2;

29 pp=1;

30 while pp==1

31 if strk_bound(jj,1)==1

32 strk_bound(jj,1)=0;

33 jj=jj+1;

34 else

35 pp=2;

36 end

37 end
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38 clear jj;

39 clear pp;

40 end

41 clear bb;

42

43 % looks at the last row to see if there is a partial streak. If

there is

44 % a partial streak, it removes it by changing all consecutive 1's to

0's.

45

46 if strk_bound(size(strk_bound,1),1)==1 || strk_bound(size(strk_bound

,1)−1,1)==1

47 strk_bound(size(strk_bound),1)=0;

48 jj=size(strk_bound,1)−1;

49 pp=2;

50 while pp==2

51 if strk_bound(jj,1)==1

52 strk_bound(jj,1)=0;

53 jj=jj−1;

54 else

55 pp=3;

56 end

57 end

58 clear jj;

59 clear pp;

60 end

61

62 %Each row in temp0, temp1, pend, and pbegin correlates to the peak

63 %number in strk_bound. For example, the value in row 1 in pbegin

64 %is the row number in strk_bound where the first peak starts, row 1

in

65 %pend is the row number in strk_bound is where the first peak ends,

row 1
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66 %in temp0 is the number of rows in strk_bound before the first peak

starts

67 %and row 1 in temp1 is the number of rows in strk_bound that make up

the

68 %first peak.

69

70 while z==1

71 while a==1

72 if j≥size(strk_bound,1)

73 a=0;

74 z=0;

75 elseif strk_bound(j,1)==0

76 k=k+1;

77 j=j+1;

78 a=1;

79 if j>size(strk_bound,1)

80 a=2;

81 j=size(strk_bound,1);

82 end

83 else

84 pbegintemp(p,1)=j;

85 a=2;

86 temp0(p,1)=k;

87 k=0;

88 p=p+1;

89 end

90 end

91 %After a peak is determined to have started, the row is followed

down

92 %each column until a zero is found again. Then the last column

of a

93 %zero is saved in pendtemp and the total number of columns in the

peak is
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94 %saved in temp1.

95 while a==2

96 if strk_bound(j,1)>0.001

97 m=m+1;

98 j=j+1;

99 a=2;

100 if j>size(strk_bound,1)

101 a=1;

102 pendtemp(q,1)=j−1;;

103 temp1(q,1)=m;

104 m=0;

105 q=q+1;

106 end

107 else

108 pendtemp(q,1)=j−1;;

109 temp1(q,1)=m;

110 m=0;

111 q=q+1;

112 a=1;

113 end

114 end

115 end

116

117 hight=pendtemp−pbegintemp;

118 avlength=mean(hight);

119 for i=size(hight):−1:1

120 if hight(i,1)<avlength*0.6

121 hight(i,:)=[];

122 pbegintemp(i,:)=[];

123 pendtemp(i,:)=[];

124 end

125 end

126
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127 strk_hightbound(:,1)=pbegintemp;

128 strk_hightbound(:,2)=pendtemp;

129 strk_hightbound(:,3)=hight;

130 end

1 function [ strk_widthbound ] = strk_width_boundries2(

strk_lengthboundt,DBW,track )

2 %strk_width_boundries: After strk_hight_boundries have found the row

3 %boundries(streak hights), we want to take the DBW variable and sum

along the columns to find

4 %the column number for each row that has the greatest value. The two

5 %columns numbers with the highest value will be the edges of streak.

6

7 %used for the 'canny' method, which produces the outline of an image

based

8 %on two thresholds, lower and upper. This function eliminates the

value

9 %for "inner" object found with the lower threshold, if one is found.

10 a=size(strk_lengthboundt,1);

11 strk_widthbound=zeros(a,3);

12 for i=1:a

13 temp=sum(track(strk_lengthboundt(i,1):strk_lengthboundt(i,2),:)

,1);

14 [r,c]=size(temp);

15 c2=c*10;

16 temp2=interp1(1:1:c,temp,1:.1:c); %interpolate the width of a

streak to 10 pixels. This allow for higher resolution of

streak widths beyond 1 pixel(2um).

17 [r2,c2]=size(temp2);

18 [outy,sdbase,thold]=autobase_track_beads2(1:c2,temp2,1);

19 streak_wid=outy;
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20 streak_wid(1,end+1)=thold;

21 [br] = peakthreshold3(streak_wid);

22 % find start of streak.

23

24

25

26 j=1;

27 jj=1;

28 while j==1

29 if jj≥size(br,2)

30 j=2;

31 elseif br(1,jj)==1

32 strk_widthbound(i,1)=jj;

33 j=2;

34 else

35 jj=jj+1;

36 end

37 end

38 jj=size(br,2);

39 while j==2

40 if jj==1

41 j=3;

42 elseif br(1,jj)==1

43 strk_widthbound(i,2)=jj;

44 j=3;

45 else

46 jj=jj−1;

47 end

48 end

49 if strk_widthbound(i,1)<10

50 strk_widthbound(i,1)=10;

51 end

52 strk_widthbound(i,3)=abs(strk_widthbound(i,2)−strk_widthbound(i
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,1));

53 clear streak_wid;

54 end

55 strk_widthbound=strk_widthbound.*0.1; % divide by 10 to bring width

back to pixels after the interpolation done above.

56 strk_widthbound(:,1)=floor(strk_widthbound(:,1));

57 strk_widthbound(:,2)=ceil(strk_widthbound(:,2)); %ceil and floor are

used to give integer values for the width dimensions to be used

for PLS width calibration.

58

59 end
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